interface energy
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 81)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 327 ◽  
pp. 54-64
Author(s):  
Ivo Spacil ◽  
David Holec ◽  
Peter Schumacher ◽  
Jiehua Li

Different Ta concentrations together with stochiometric grain refiner (Al-2.2Ti-1B) in Al-Si-Mg based alloys were investigated with the aim to elucidate grain refinement mechanisms. Post-solidification microstructure was characterised using optical microscopy and scanning electron microscopy (SEM), with a special focus on the Ta-rich layer (more likely to be Al3Ta) on the basal planes (0001) of TiB2. A significant grain refinement was observed by using the solute Ta together with stochiometric grain refiner (Al-2.2Ti-1B). In order to further elucidate the formation of Ta-rich layer on the basal planes (0001) of TiB2, the Density Functional Theory (DFT) calculation were also performed to determine the interface energies of different interfaces and sandwich configurations, including Al (111), Al3Ti (112) and Al3Ta (112) at the interface of TiB2 basal plane (0001). It was found that the interface energy for Ti-terminated TiB2 at the interface throughout all configurations involved in this paper is lower than that for B-terminated TiB2, indicating that Ti-terminated TiB2 is more favourable. It was also found that the Al3Ta configuration yields the same interface energies as the Al3Ti configuration. Furthermore, the interface energy of the sandwich configuration also shows nearly identical values along the TiB2 // Al3Ti and TiB2 // Al3Ta interface energy, strongly indicating that the solute Ti can be fully replaced by the solute Ta.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Vahid Attari ◽  
Raymundo Arroyave

AbstractComputational methods are increasingly being incorporated into the exploitation of microstructure–property relationships for microstructure-sensitive design of materials. In the present work, we propose non-intrusive materials informatics methods for the high-throughput exploration and analysis of a synthetic microstructure space using a machine learning-reinforced multi-phase-field modeling scheme. We specifically study the interface energy space as one of the most uncertain inputs in phase-field modeling and its impact on the shape and contact angle of a growing phase during heterogeneous solidification of secondary phase between solid and liquid phases. We evaluate and discuss methods for the study of sensitivity and propagation of uncertainty in these input parameters as reflected on the shape of the Cu6Sn5 intermetallic during growth over the Cu substrate inside the liquid Sn solder due to uncertain interface energies. The sensitivity results rank σSI,σIL, and σIL, respectively, as the most influential parameters on the shape of the intermetallic. Furthermore, we use variational autoencoder, a deep generative neural network method, and label spreading, a semi-supervised machine learning method for establishing correlations between inputs of outputs of the computational model. We clustered the microstructures into three categories (“wetting”, “dewetting”, and “invariant”) using the label spreading method and compared it with the trend observed in the Young-Laplace equation. On the other hand, a structure map in the interface energy space is developed that shows σSI and σSL alter the shape of the intermetallic synchronously where an increase in the latter and decrease in the former changes the shape from dewetting structures to wetting structures. The study shows that the machine learning-reinforced phase-field method is a convenient approach to analyze microstructure design space in the framework of the ICME.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 382
Author(s):  
Chelsea D. Appleget ◽  
Juan Sebastian Riano ◽  
Andrea M. Hodge

The microstructural transformations of binary nanometallic multilayers (NMMs) to equiaxed nanostructured materials were explored by characterizing a variety of nanoscale multilayer films. Four material systems of multilayer films, Hf-Ti, Ta-Hf, W-Cr, and Mo-Au, were synthesized by magnetron sputtering, heat treated at 1000 °C, and subsequently characterized by transmission electron microscopy. Binary systems were selected based on thermodynamic models predicting stable nanograin formation with similar global compositions around 20–30 at.%. All NMMs maintained nanocrystalline grain sizes after evolution into an equiaxed structure, where the systems with highly mobile incoherent interfaces or higher energy interfaces showed a more significant increase in grain size. Furthermore, varying segregation behaviors were observed, including grain boundary (GB) segregation, precipitation, and intermetallic formation depending on the material system selected. The pathway to tailored microstructures was found to be governed by key mechanisms and factors as determined by a film’s initial characteristics, including global and local composition, interface energy, layer structure, and material selection. This work presents a global evaluation of NMM systems and demonstrates their utility as foundation materials to promote tailored nanomaterials.


Author(s):  
H. J. Böhm ◽  
G. A. Zickler ◽  
F. D. Fischer ◽  
J. Svoboda

AbstractThermodynamic modeling of the development of non-spherical inclusions as precipitates in alloys is an important topic in computational materials science. The precipitates may have markedly different properties compared to the matrix. Both the elastic contrast and the misfit eigenstrain may yield a remarkable generation of elastic strain energy which immediately influences the kinetics of the developing precipitates. The relevant thermodynamic framework has been mostly based on spherical precipitates. However, the shapes of actual particles are often not spherical. The energetics of such precipitates can be met by adapting the spherical energy terms with shape factors. The well-established Eshelby framework is used to evaluate the elastic strain energy of inclusions with ellipsoidal shapes (described by the axes a, b, and c) that are subjected to a volumetric transformation strain. The outcome of the study is two shape factors, one for the elastic strain energy and the other for the interface energy. Both quantities are provided in the form of easy-to-use diagrams. Furthermore, threshold elastic contrasts yielding strain energy shape factors with the value 1.0 for any ellipsoidal shape are studied.


2022 ◽  
pp. 21-34
Author(s):  
Deyuan Zhang ◽  
Huawei Chen ◽  
Yonggang Jiang ◽  
Jun Cai ◽  
Lin Feng ◽  
...  

2022 ◽  
pp. 153-175
Author(s):  
Deyuan Zhang ◽  
Huawei Chen ◽  
Yonggang Jiang ◽  
Jun Cai ◽  
Lin Feng ◽  
...  

2022 ◽  
Vol 206 ◽  
pp. 114235
Author(s):  
Qian Zhang ◽  
Scott Barnett ◽  
Peter Voorhees

2022 ◽  
pp. 127-150
Author(s):  
Deyuan Zhang ◽  
Huawei Chen ◽  
Yonggang Jiang ◽  
Jun Cai ◽  
Lin Feng ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 239
Author(s):  
Koutaro Onoda ◽  
Ben Nanzai

A spontaneous oscillation between the expansion and contraction of a nitrobenzene pendant droplet containing di-(2-ethylhexyl)phosphoric acid (DEHPA) was observed in an aqueous phase under alkaline conditions. We described this phenomenon as the spontaneous oscillation of the oil–water interfacial tension. The oscillation characteristics such as the induction period and the interfacial-tension oscillation frequency were investigated under different temperatures and aqueous phase polarities. The effects of the interfacial tension of the biphasic pendant-droplet, the surface excess of the surfactant molecules, and the amount of nitrobenzene elution from the droplet to the aqueous phase on the oscillation characteristics were investigated. Consequently, the periodic expansion–contraction oscillation mechanism was explained through the adsorption–desorption cycle of DEHPA with respect to the aggregate formation of the inverted micelle of DEHPA. This study was based on a simple vibration phenomenon of interfacial tension, and is extremely important for clarifying the predominant factors that cause fluctuations in the free interface energy, which has been ambiguous.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Chuancang Zhou ◽  
Feipeng Zhang ◽  
Hongyu Wu

To improve the electrocatalytic properties for hydrogen evolution reactions, strategies need to be adopted, such as increasing specific surface area and active site, as well as decreasing interface energy. Herein, we report the preparation of FeP on carbon cloth using a two-step process of hydrothermal and phosphating. Otherwise, to utilize the excellent catalytic performance of Pt and decrease consumption of Pt, the hyperdispersed Pt nanoparticles for the sake of modifying transition-metal phosphides film were designed and fabricated. Finally, 3D FeP-Pt/CC was successfully prepared by means of electro-deposition using three electrodes. The crystalline structure, surface morphology and elemental composition of the synthesized samples have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS). The XRD results show that the as-prepared products are of orthorhombic FeP structure, and EDS results indicate that there exist Pt elements in 3D FeP-Pt/CC. The electrocatalytic performances were evaluated by, such as linear scan voltammetry, tafel plots and electrochemical impedance spectroscopy on electrochemical workstations. These results show that the FeP-Pt/CC exhibit a current density of 10 mA·cm−2 at an over-potential of 58 mV for HER in 0.5 M H2SO4, which is very close to the values of 20%Pt/C which was previously reported. FeP-Pt/CC has excellent durability.


Sign in / Sign up

Export Citation Format

Share Document