scholarly journals Matroids, Complexity and Computation

2021 ◽  
Author(s):  
◽  
Michael Snook

<p>The node deletion problem on graphs is: given a graph and integer k, can we delete no more than k vertices to obtain a graph that satisfies some property π. Yannakakis showed that this problem is NP-complete for an infinite family of well- defined properties. The edge deletion problem and matroid deletion problem are similar problems where given a graph or matroid respectively, we are asked if we can delete no more than k edges/elements to obtain a graph/matroid that satisfies a property π. We show that these problems are NP-hard for similar well-defined infinite families of properties.  In 1991 Vertigan showed that it is #P-complete to count the number of bases of a representable matroid over any fixed field. However no publication has been produced. We consider this problem and show that it is #P-complete to count the number of bases of matroids representable over any infinite fixed field or finite fields of a fixed characteristic.  There are many different ways of describing a matroid. Not all of these are polynomially equivalent. That is, given one description of a matroid, we cannot create another description for the same matroid in time polynomial in the size of the first description. Due to this, the complexity of matroid problems can vary greatly depending on the method of description used. Given one description a problem might be in P while another description gives an NP-complete problem. Based on these interactions between descriptions, we create and study the hierarchy of all matroid descriptions and generalize this to all descriptions of countable objects.</p>

2021 ◽  
Author(s):  
◽  
Michael Snook

<p>The node deletion problem on graphs is: given a graph and integer k, can we delete no more than k vertices to obtain a graph that satisfies some property π. Yannakakis showed that this problem is NP-complete for an infinite family of well- defined properties. The edge deletion problem and matroid deletion problem are similar problems where given a graph or matroid respectively, we are asked if we can delete no more than k edges/elements to obtain a graph/matroid that satisfies a property π. We show that these problems are NP-hard for similar well-defined infinite families of properties.  In 1991 Vertigan showed that it is #P-complete to count the number of bases of a representable matroid over any fixed field. However no publication has been produced. We consider this problem and show that it is #P-complete to count the number of bases of matroids representable over any infinite fixed field or finite fields of a fixed characteristic.  There are many different ways of describing a matroid. Not all of these are polynomially equivalent. That is, given one description of a matroid, we cannot create another description for the same matroid in time polynomial in the size of the first description. Due to this, the complexity of matroid problems can vary greatly depending on the method of description used. Given one description a problem might be in P while another description gives an NP-complete problem. Based on these interactions between descriptions, we create and study the hierarchy of all matroid descriptions and generalize this to all descriptions of countable objects.</p>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Sakander Hayat ◽  
Asad Khan ◽  
Suliman Khan ◽  
Jia-Bao Liu

A connected graph is called Hamilton-connected if there exists a Hamiltonian path between any pair of its vertices. Determining whether a graph is Hamilton-connected is an NP-complete problem. Hamiltonian and Hamilton-connected graphs have diverse applications in computer science and electrical engineering. The detour index of a graph is defined to be the sum of lengths of detours between all the unordered pairs of vertices. The detour index has diverse applications in chemistry. Computing the detour index for a graph is also an NP-complete problem. In this paper, we study the Hamilton-connectivity of convex polytopes. We construct three infinite families of convex polytopes and show that they are Hamilton-connected. An infinite family of non-Hamilton-connected convex polytopes is also constructed, which, in turn, shows that not all convex polytopes are Hamilton-connected. By using Hamilton connectivity of these families of graphs, we compute exact analytical formulas of their detour index.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Sushmita Gupta ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
Meirav Zehavi

An input to the P OPULAR M ATCHING problem, in the roommates setting (as opposed to the marriage setting), consists of a graph G (not necessarily bipartite) where each vertex ranks its neighbors in strict order, known as its preference. In the P OPULAR M ATCHING problem the objective is to test whether there exists a matching M * such that there is no matching M where more vertices prefer their matched status in M (in terms of their preferences) over their matched status in M *. In this article, we settle the computational complexity of the P OPULAR M ATCHING problem in the roommates setting by showing that the problem is NP-complete. Thus, we resolve an open question that has been repeatedly and explicitly asked over the last decade.


Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


2010 ◽  
Vol 10 (1&2) ◽  
pp. 141-151
Author(s):  
S. Beigi

Although it is believed unlikely that $\NP$-hard problems admit efficient quantum algorithms, it has been shown that a quantum verifier can solve NP-complete problems given a "short" quantum proof; more precisely, NP\subseteq QMA_{\log}(2) where QMA_{\log}(2) denotes the class of quantum Merlin-Arthur games in which there are two unentangled provers who send two logarithmic size quantum witnesses to the verifier. The inclusion NP\subseteq QMA_{\log}(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur protocol for 3-coloring with perfect completeness and gap 1/24n^6. Moreover, Aaronson et al. have shown the above inclusion with a constant gap by considering $\widetilde{O}(\sqrt{n})$ witnesses of logarithmic size. However, we still do not know if QMA_{\log}(2) with a constant gap contains NP. In this paper, we show that 3-SAT admits a QMA_{\log}(2) protocol with the gap 1/n^{3+\epsilon}} for every constant \epsilon>0.


2001 ◽  
Vol 34 (44) ◽  
pp. 9555-9567 ◽  
Author(s):  
Tomohiro Sasamoto ◽  
Taro Toyoizumi ◽  
Hidetoshi Nishimori

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


Sign in / Sign up

Export Citation Format

Share Document