scholarly journals Numerical Study on Estimation of Static Configuration of Steel Lazy Wave Riser Using Dynamic Relaxation Method

2018 ◽  
Vol 32 (6) ◽  
pp. 466-473 ◽  
Author(s):  
Seunghoon Oh ◽  
Jae-Hwan Jung ◽  
Byeongwon Park ◽  
Yong-Ju Kwon ◽  
Dongho Jung
1969 ◽  
Vol 4 (2) ◽  
pp. 75-80 ◽  
Author(s):  
K R Rushton

The von Kármán equations for the large deflection of plates are solved by the dynamic-relaxation method. Detailed results are presented for square plates having simply supported edges with zero in-plane boundary stresses. The results show that high stresses occur towards the corners of the plates. The mesh effect is investigated and recommendations are made for the optimum mesh spacing.


2018 ◽  
Vol 151 ◽  
pp. 380-388 ◽  
Author(s):  
Xinyu Wang ◽  
Jianguo Cai ◽  
Ruiguo Yang ◽  
Jian Feng

1968 ◽  
Vol 19 (4) ◽  
pp. 375-387 ◽  
Author(s):  
K. R. Rushton ◽  
Lucy M. Laing

SummaryThe Dynamic Relaxation solution of the Laplace equation introduces dynamic terms into the basic equation. When this is written as an explicit finite difference formulation it can be solved by an iterative process which only requires a simple substitution routine. The method is easy to programme and requires small storage in the computer. By studying problems involving wind tunnel interference in steady flow, the potentialities of the method are demonstrated.


2016 ◽  
Vol 837 ◽  
pp. 99-102
Author(s):  
Milos Huttner ◽  
Jiří Maca ◽  
Petr Fajman

This paper presents a practical application of form-finding process of cable-membrane structures. The dynamic relaxation method with kinetic damping is used as the computation method for numerical analysis. A brief description of the construction, a description of the models and the way of solving tasks will be introduced. The correct operation of the implemented algorithm will be compared with a commercial program.


2020 ◽  
Vol 28 (4) ◽  
pp. 280-289
Author(s):  
Hamda Chagraoui ◽  
Mohamed Soula

The purpose of the present work is to improve the performance of the standard collaborative optimization (CO) approach based on an existing dynamic relaxation method. This approach may be weakened by starting design points. First, a New Relaxation (NR) method is proposed to solve the difficulties in convergence and low accuracy of CO. The new method is based on the existing dynamic relaxation method and it is achieved by changing the system-level consistency equality constraints into relaxation inequality constraints. Then, a Modified Collaborative Optimization (MCO) approach is proposed to eliminate the impact of the information inconsistency between the system-level and the discipline-level on the feasibility of optimal solutions. In the MCO approach, the impact of the inconsistency is treated by transforming the discipline-level constrained optimization problems into an unconstrained optimization problem using an exact penalty function. Based on the NR method, the performance of the MCO approach carried out by solving two multidisciplinary optimization problems. The obtained results show that the MCO approach has improved the convergence of CO significantly. These results prove that the present MCO succeeds in getting feasible solutions while the CO fails to provide feasible solutions with the used starting design points.


Sign in / Sign up

Export Citation Format

Share Document