scholarly journals Heat Transfer Analysis of a Rectangular Moving Porous Fin with Temperature-Dependent Thermal Conductivity and Internal Heat Generation: Comparative and Parametric Studies

2021 ◽  
Vol 1 (2) ◽  
pp. 50-66
Author(s):  
M. G. Sobamowo ◽  
A. A. Yinusa ◽  
M. O. Salami ◽  
O. C. Osih ◽  
B. O. Adesoye
2019 ◽  
Vol 97 (5) ◽  
pp. 566-575
Author(s):  
S. Abbasbandy ◽  
E. Shivanian

In the current work, thermal behaviour analysis of a natural convection porous fin with internal heat generation and temperature-dependent thermal conductivity is studied. The developed symbolic heat transfer models are for the purpose of the investigation of the effects of various parameters on the thermal behaviour of the porous fin. It is shown that its governing nonlinear differential with proper boundary conditions is exactly solvable. To this aim, we reduce the order of differential equations first and then convert into a total differential equation by multiplying a convenient integrating factor. A full discussion and exact analytical solution in the implicit form is given for further physical interpretation and it is proved that a solution to the problem may not exist or the solution is mathematically unique depending on the values of the parameters of the model.


2020 ◽  
Vol 1 (1) ◽  
pp. 110
Author(s):  
Gbeminiyi Sobamowo ◽  

This paper focuses on finite element analysis of the thermal behaviour of a moving porous fin with temperature-variant thermal conductivity and internal heat generation. The numerical solutions are used to investigate the effects of Peclet number, Hartmann number, porous and convective parameters on the temperature distribution, heat transfer and efficiency of the moving fin. The results show that when the convective and porous parameters increase, the adimensional fin temperature decreases. However, the value of the fin temperature is amplified as the value Peclet number is enlarged. Also, an increase in the thermal conductivity and the internal heat generation cause the fin temperature to fall and the rate of heat transfer from the fin to decrease. Therefore, the operational parameters of the fin must be carefully selected to avoid thermal instability in the fin.


Sign in / Sign up

Export Citation Format

Share Document