The exact closed solution in the analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation

2019 ◽  
Vol 97 (5) ◽  
pp. 566-575
Author(s):  
S. Abbasbandy ◽  
E. Shivanian

In the current work, thermal behaviour analysis of a natural convection porous fin with internal heat generation and temperature-dependent thermal conductivity is studied. The developed symbolic heat transfer models are for the purpose of the investigation of the effects of various parameters on the thermal behaviour of the porous fin. It is shown that its governing nonlinear differential with proper boundary conditions is exactly solvable. To this aim, we reduce the order of differential equations first and then convert into a total differential equation by multiplying a convenient integrating factor. A full discussion and exact analytical solution in the implicit form is given for further physical interpretation and it is proved that a solution to the problem may not exist or the solution is mathematically unique depending on the values of the parameters of the model.

2019 ◽  
Vol 8 (1) ◽  
pp. 145-156
Author(s):  
Trushit Patel ◽  
Ramakanta Meher

Abstract In this paper, the temperature distribution in a convective radial fins is analyzed through a fractional order energy balance equation with the consideration of internal heat generation and temperature dependent thermal conductivity. Adomian decomposition Sumudu transform method is used to study the influence of temperature distribution and the efficiency of radial fins for different values of thermal conductivity and to determine the role of thermal conductivity, thermo-geometric fin parameter as well as fractional order values in finding the temperature distribution and the fin efficiency of the convective radial fins. Finally, the efficiency of this proposed method has been studied by comparing the obtained results with the classical order results obtained by using numerical method and Variational Iteration Method (Coskun and Atay, 2007).


Sign in / Sign up

Export Citation Format

Share Document