ANALYSIS OF THE KINETICS AND DIRECTIONALITY OF ELASTOPLASTIC DEFORMATION AND FRACTURE

2019 ◽  
Vol 85 (6) ◽  
pp. 47-52
Author(s):  
N. A. Makhutov ◽  
I. V. Makarenko ◽  
L. V. Makarenko

Safety, survivability, and serviceability of the equipment are governed by the strength characteristics of the separate units and elements which can contain initial or operational defects such as superficial differently oriented semi-elliptical cracks. Numerical methods of calculation provide a large bulk of information about the stress-strain state (SSS) of those elements proceeding from the given algorithms for calculating the corresponding fracture models. Change in the type of the SSS near the crack contour when going from the bulk to the surface depends on the constraint of deformations along their front, i.e., on the 3D character of the SSS. Diagnostics of the form change of the defects (surface differently oriented semi-elliptic low-cycle cracks) is carried out on the basis of experimental results and numerical solutions. The data of the finite element modeling are implemented on the basis of macros of the ANSYS program complex. The regularity of the directionality of developing the elastoplastic fracture under low-cycle loading is studied. The proposed methodology is proved by the parametric equations of the kinetics of forming changes of the cracks under study in the fractographic analysis of the surfaces of their development. The results of testing samples with semi-elliptic cracks under low-cycle loading are used in analysis of the parameters of the morphology of the surfaces of the developed defects. The results of measuring fields of elastoplastic deformation intensity in the crack tip and geometrical characteristics of the fracture surface development are presented. Analysis of the dynamics of the local stress-strain state near the contour of multi-oriented defects in parts and structural units of the equipment showed a good agreement between the experimental parameters of the geometry of developing cracks and characteristics obtained by numerical methods. The presented parametric equations specify the characteristics of nonlinear fracture mechanics thus providing reliable estimation and forecasting of survivability, and safety of serviceability of the critical equipment. The deformation criteria of nonlinear fracture mechanics are used to demonstrate the dependence of fracture development on the 3D character of the stress-strain state indicating to the directionality of the geometric development of the fracture surface form.

2020 ◽  
Vol 91 (5) ◽  
pp. 46-58
Author(s):  
G.I. SHAPIRO ◽  

As it was found previously, the concrete fracture surface formed from tensile force is described by fractal geometry methods. It is shown thatthe fractal dimension value is related to the tensile stress gradient φ_i, to the aggregate size and, as shown earlier, does not depend on the strength of concrete. Moreover, the fractal dimension depends on the size of the sample only until its size reaches a value to which linear fracture mechanics is applicable. The stress intensity factor is related to the fractal dimension, and both characteristics are related to the aggregate size. A connection for the critical stress intensity factor K_Ic^f(l,φ_i) characterizing the crack resistance of the material in nonlinear fracture mechanics with the crack size l and the specimenis proposed. The stress intensity factor for a fractal crack K_Ic^f(l,φ_i) can be used to calculate structures using nonlinear fracture mechanics.


Author(s):  
Yu.N. Ovcharenko

On the basis of linear fracture mechanics, a complete set of asymptotic formulas is obtained to describe the stress-strain state at the top of a narrow U-shaped notch. This type of defect can be possessed by a crack that has undergone a corrosive effect of the environment, or there can be a crack-like defect in a welded joint, e.g. lack of penetration, undercut, or a narrow slot in the part. To comparatively assess the risk of cracking at the tops of narrow U-shaped notches, and identify the places and directions of fracture initiation, we reveal the possibility of using such energy criteria as the deformation energy density and The previously indicated criteria were proposed by the author of this work for classical cracks-cuts. The purpose of this work was to study, on the basis of singular solutions of linear fracture mechanics, the stress-strain state in terms and near the tops of extremely narrow U-shaped notches, i.e., blunt cracks, in comparison with classical cracks-cuts


Sign in / Sign up

Export Citation Format

Share Document