Impacts of Land Use and Land Cover Changes on Sediment Yield in a Brazilian Amazon Drainage Basin

2008 ◽  
Vol 45 (4) ◽  
pp. 443-453 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
Antonio Roberto Formaggio ◽  
Yosio Edemir Shimabukuro
Author(s):  
Edivaldo Afonso de Oliveira Serrão ◽  
Madson Tavares Silva ◽  
Thomás Rocha Ferreira ◽  
Lorena Conceição Paiva de Ataide ◽  
Cleber Assis dos Santos ◽  
...  

2020 ◽  
Author(s):  
Safaa Naffaa ◽  
L.P.H. (Rens) van Beek ◽  
Frances E.Dunn ◽  
Steven de Jong

<p>The Amazon River is an important source of the sediment that is transported and accumulated along the coast of Suriname. As such it is an important factor in maintaining the coastline as this sediment is deposited in mud banks that move towards the shore and coalesce with it, thus preventing coastal erosion. Accordingly, a steady and adequate supply of sediment from the Amazon river is required especially considering increased coastal erosion rates that may occur as a result of rising sea levels due to climate change. Yet at the same time, climate change may alter the hydrological regime of the Amazon and influence its transport capacity, affecting sediment transport to the mouth and coast. Furthermore, the sediment supply to the river may be altered as a result of land cover changes and other anthropogenic activities, including deforestation and sediment trapping in existing and future planned reservoirs.<br>Studying the transport of sediment from source to sink and quantifying how future changes affect the mean rate of sediment supply to the Surinam coast and its variability will lead to a better understanding of the intricacies involved. We use a spatial-temporal process-based model together with a set of plausible scenarios of future change based on combinations of the Shared Socioeconomic Pathways (SSP) and the Representative Concentration Pathways (RCP). In this study, we used two models: PCRGLOB-Set and PCRGLOB-WB. PCRGLOB-SET is based on the RUSLE equation and is used to assess the local sediment supply including the effects of land cover changes. PCRGLOB-WB simulates hydrological responses and changes under climate and land-use change. Moreover, PCRGLOB-WB is used to determine the trapping efficiency of reservoirs. The PCRGLOB-WB model was applied to a business-as-usual scenario for the 21st century (SSP 2 with RCP 6.0) and we considered uncertainty in the projected climate by using 5 Global Climate Models (GCMs). We apply the model to different future scenarios considering climate, socioeconomic and land-use change. For validation, the observations of six stations along the Amazon river were compared to the estimations of the models for the historical period (1971-2010), which also serves as a reference run to evaluate changes in sediment production and sediment yield. </p>


2012 ◽  
Vol 34 ◽  
pp. 239-246 ◽  
Author(s):  
André Lima ◽  
Thiago Sanna Freire Silva ◽  
Luiz Eduardo Oliveira e Cruz de Aragão ◽  
Ramon Morais de Feitas ◽  
Marcos Adami ◽  
...  

2015 ◽  
Vol 20 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Hassen M. Yesuf ◽  
Mohammed Assen ◽  
Assefa M. Melesse ◽  
Tena Alamirew

2021 ◽  
Vol 11 (03) ◽  
pp. 54-74
Author(s):  
Nyemo A. Chilagane ◽  
Japhet J. Kashaigili ◽  
Edmund Mutayoba ◽  
Paul Lyimo ◽  
Pantaleo Munishi ◽  
...  

2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Syed Atif Bokhari ◽  
Zafeer Saqib ◽  
Amjad Ali ◽  
Arif Mahmud ◽  
Nadia Akhtar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document