swat model
Recently Published Documents


TOTAL DOCUMENTS

1389
(FIVE YEARS 599)

H-INDEX

57
(FIVE YEARS 10)

Author(s):  
Eder A. S. Sá ◽  
Ildegardis Bertol ◽  
Silvio L. Rafaeli Neto ◽  
Daiane T. Schier

ABSTRACT Water erosion is influenced by climate, soil, soil cover and soil conservation practices. These factors can be modified by natural (especially climate) and/or anthropogenic (especially soil, soil cover and conservation practices) actions. The relief factor also influences the water erosion and can also be partially modified by anthropic action. This study aimed to evaluate the impact of anthropogenic action due to the introduction of soil crop in no-tillage system on water erosion, and on the consequent flow of sediments in the water. The study was carried out in the Marombas river basin with an area of 3,939 km², using the Soil Water Assessment Tools (SWAT) model. The calibration and validation of the model for sediment production was carried out with a historical series of synthetic data. The data from this series were estimated by linear regression from sediment value load and the average daily flow obtained punctually in the basin’s outlet. The SWAT model was calibrated on a daily scale with data from 1979 to 1989 and was validated with data from 1994 and 1997. The SWAT model was suitable to represent the average daily flow and sediment flow in the Marombas watershed. The hypothesis of reduced sediment production with increasing soil crop in no-tillage system was accepted.


CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105975
Author(s):  
Feng Lin ◽  
Xingwei Chen ◽  
Huaxia Yao ◽  
Fengyi Lin

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Mohammad Zare ◽  
Shahid Azam ◽  
David Sauchyn

Soil water content (SWC) is one of the most important hydrologic variables; it plays a decisive role in the control of various land surface processes. We simulated SWC using a Soil and Water Assessment Tool (SWAT) model in southern Saskatchewan. SWC was calibrated using measured data and Soil Moisture Active Passive (SMAP) Level-4 for the surface (0–5 cm) SWC for hydrological response units (HRU) at daily and monthly (warm season) intervals for the years 2015 to 2020. We used the SUFI-2 technique in SWAT-CUP, and observed daily instrumented streamflow records, for calibration (1995 to 2004) and validation (2005–2010). The results reveal that the SWAT model performs well with a monthly PBIAS < 10% and Nash–Sutcliffe efficiency (NS) and R2 ≥ 0.8 for calibration and validation. The correlation coefficient between ground measurement with SMAP and SWAT products are 0.698 and 0.633, respectively. Moreover, SMAP data of surface SWC coincides well with measurements in terms of both amount and trend compared with the SWAT product. The highest r value occurred in July when the mean r value in SWAT and SMAP were 0.87 to 0.84, and then in June for r value of 0.75. In contrast, the lowest values were in April and May (0.07 and 0.04, respectively) at the beginning of the growing season in southern Saskatchewan. Furthermore, calibration in the SWAT model is based on a batch form whereby parameters are adjusted to corresponding input by modifying simulations with observations. SWAT underestimates the abrupt increase in streamflow during the snowmelt months (April and May). This study achieved the objective of developing a SWAT model that simulates SWC in a prairie watershed, and, therefore, can be used in a subsequent phase of research to estimate future soil moisture conditions under projected climate changes.


Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract In this study, the Soil and Water Assessment Tool (SWAT) model was used to examine the spatial variability of sediment yield, quantify runoff, and soil loss at the sub-basin level and prioritize sub-basins in the Sindh watershed due to its computational efficiency in complex watersheds. The Sequential Uncertainty Fitting-2 approach was used to determine the sensitivity and uncertainty of model parameters. The parameter sensitivity analysis showed that Soil Conservation Services Curve Number II is the most sensitive model parameter for streamflow simulation, whereas linear parameters for sediment re-entrainment is the most significant parameter for sediment yield simulation. This study used daily runoff and sediment event data from 2003 to 2013; data from 2003 to 2008 were utilized for calibration and data from 2009 to 2013 were used for validation. In general, the model performance statistics showed good agreement between observed and simulated values of streamflow and sediment yield for both calibration and validation periods. The noticed insights of this research show the ability of the SWAT model in simulating the hydrology of the Sindh watershed and its reliability to be utilized as a decision-making tool by decision-makers and researchers to influence strategies in the management of watershed processes.


2022 ◽  
Vol 14 (2) ◽  
pp. 678
Author(s):  
Chong Wei ◽  
Zhiqiang Zhang ◽  
Zhiguo Wang ◽  
Lianhai Cao ◽  
Yichang Wei ◽  
...  

The relationship between water-sediment processes and landscape pattern changes has currently become a research hotspot in low-carbon water and land resource optimization research. The SWAT-VRR model is a distributed hydrological model which better shows the effect of land use landscape change on hydrological processes in the watershed. In this paper, the hydrological models of the Dapoling watershed were built, the runoff and sediment yield from 2006 to 2011 were simulated, and the relationship between landscape patterns and water-sediment yield was analyzed. The results show that the SWAT-VRR model is more accurate and reasonable in describing runoff and sediment yield than the SWAT model. The sub-basins whose soil erosion is relatively light are mostly concentrated in the middle reaches with a slope mainly between 0–5°. The NP, PD, ED, SPIIT, SHEI, and SHDI of the watershed increased slightly, and the COHESION, AI, CONTAG, and LPI showed a certain decrease. The landscape pattern is further fragmented, with the degree of landscape heterogeneity increasing and the connection reducing. The runoff, sediment yield and surface runoff are all extremely significantly negatively correlated with forest, which implies that for more complicated patch shapes of forest which have longer boundaries connecting with the patches of other landscape types, the water and sediment processes are regulated more effectively. Therefore, it can be more productive to carry out research on the optimization of water and soil resources under the constraint of carbon emission based on the SWAT-VRR model.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Abdennabi Alitane ◽  
Ali Essahlaoui ◽  
Mohammed El Hafyani ◽  
Abdellah El Hmaidi ◽  
Anas El Ouali ◽  
...  

Soil erosion is an increasingly issue worldwide, due to several factors including climate variations and humans’ activities, especially in Mediterranean ecosystems. Therefore, the aim of this paper is: (i) to quantify and to predict soil erosion rate for the baseline period (2000–2013) and a future period (2014–2027), using the Revised Universal Soil Loss Equation (RUSLE) and the Soil and Water Assessment Tool (SWAT) model in the R’Dom watershed in Morocco, based on the opportunities of Remote Sensing (RS) techniques and Geographical Information System (GIS) geospatial tools. (ii) we based on classical statistical downscaling model (SDSM) for rainfall prediction. Due to the lack of field data, the model results are validated by expert knowledge. As a result of this study, it is found that both agricultural lands and bare lands are most affected by soil erosion. Moreover, it is showed that soil erosion in the watershed was dominated by very low and low erosion. Although the area of very low erosion and low erosion continued to decrease. Hence, we hereby envisage that our contribution will provide a more complete understanding of the soil degradation in this study area and the results of this research could be a crucial reference in soil erosion studies and also may serve as a valuable guidance for watershed management strategies.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Jing Zhang ◽  
Peiqi Zhang ◽  
Yongyu Song

Carbonate rocks are widely distributed in southwest China, forming a unique karst landscape. The Lijiang River Basin provides a typical example of an area with concentrated karst. Research on the laws of hydrology and water quality migration in the Lijiang River Basin is important for the management of the water resources of Guilin City and similar areas. In this study, we combined three meteorological data with the soil and water assessment tool (SWAT) model and the hydrological simulation program-Fortran (HSPF) model to simulate the hydrological and water quality processes in the Lijiang River Basin separately. We chose the Nash–Sutcliffe efficiency (NSE) coefficient, coefficient of determination (R2), root mean square error-observations standard deviation ratio (RSR), and mean absolute error (MAE) as the metrics used to evaluate the models. The results, combined with the time-series process lines, indicated that the SWAT model provides a more accurate performance than the HSPF model in streamflow, ammonia nitrogen (NH3-N), and dissolved oxygen (DO) simulations. In addition, we divided the karst and non-karst areas, and we analyzed the differences between them in water balance, sediment transport, and pollution load. We further identified the key source areas of pollution load in the Lijiang River Basin, evaluated the pollution reduction effect of best management practices (BMPs) on surface source pollution, and proposed some pollution control countermeasures. Each scenario, especially returning farmland to forest and creating vegetation buffer zones, reduces the NH3-N and DO pollution load.


2022 ◽  
Vol 14 (1) ◽  
pp. 534
Author(s):  
Arunima Sarkar Basu ◽  
Laurence William Gill ◽  
Francesco Pilla ◽  
Bidroha Basu

Investigating the impact of land cover change in hydrological modelling is essential for water resources management. This paper investigates the importance of landcover change in the development of a physically-based hydrological model called SWAT. The study area considered is the Dodder River basin located in southern Dublin, Ireland. Runoff at the basin outlet was simulated using SWAT for 1993–2019 using five landcover maps obtained for 1990, 2000, 2006, 2012 and 2018. Results indicate that, in general, the SWAT model-simulated runoff for a chosen time-period are closer to the real-world observations when the landcover data used for simulation was collated as close to the time-period for which the simulations were performed. For 23 (20) years (from 27 years period) the monthly mean (maximum) runoff for the Dodder River generated by the SWAT model had the least error when the nearby landcover data were used. This study indicates the necessity of considering dynamic and time-varying landcover data during the development of hydrological modelling for runoff simulation. Furthermore, two composite quantile functions were generated by using a kappa distribution for monthly mean runoff and GEV distribution for monthly maximum runoff, based on model simulations obtained using different landcover data corresponding to different time-period. Modelling landcover change patterns and development of projected landcover in the future for river basins in Ireland needs to be integrated with SWAT to simulate future runoff.


Sign in / Sign up

Export Citation Format

Share Document