scholarly journals Cable Vibrations in Cable-Stayed Bridges

2007 ◽  
Author(s):  
Elsa de Sá Caetano

<p>The fifty years of experience of construction of cable-stayed bridges since their establishment as a new category among the classical types have brought an immense progress, ranging from design and conception to materials, analysis, construction, observation and retrofitting. The growing construction of cable-stayed bridges has also triggered researchers’ and designers’ attention to the problem of cable vibrations. Intensive research has been developed all over the world during the last two decades as a consequence of the numerous cases of cable vibrations exhibited by all types of cable-stayed bridges.<p>Despite the increased knowledge of the various vibration phenomena, most of the outcomes and research results have been published in journals and conference proceedings and scarce information is currently provided by the existing recommendations and codes. <p>The present book provides a comprehensive survey on the governing phenomena of cable vibration, both associated with direct action of wind and rain: buffeting, vortex-shedding, wake effects, rain-wind vibration; and resulting from the indirect excitation through anchorage oscillation: external and parametric excitation. Methodologies for assessment of the effects of those phenomena are presented and illustrated by practical examples. Control of cable vibrations is then discussed and state-of-art results on the design of passive control devices are presented. <p>The book is complemented with a series of case reports reflecting the practical approach shared by experienced designers and consultants: Yves Bournand (VSL International), Chris Geurts (TNO), Carl Hansvold (Johs. Holt), Allan Larsen (Cowi) and Randall Poston (WDP & Associates).

1995 ◽  
Vol 22 (5) ◽  
pp. 1001-1020 ◽  
Author(s):  
Raju Tuladhar ◽  
Walter H. Dilger ◽  
Mamdouh M. Elbadry

In cable-stayed bridges, modelling the cables is of particular significance for the seismic behaviour of the structure. The common practice of modelling a cable by a single truss element is inadequate for seismic response calculations because it essentially precludes the lateral cable vibration modes. The present paper studies the influence of cable vibrations on the seismic response of cable-stayed bridges. Three bridge examples with different spans and properties were used. Cable vibrations are accounted for through the use of multiple links for each cable. Cable vibration effects are found to be significant for seismic response calculations, particularly when the cable fundamental frequencies are overlapping with the first few frequencies of the bridge. Parametric studies are conducted with regard to the number of links per cable, the effect of the modulus of elasticity of the cables, and different earthquakes on the bridge response. Modelling the cables by two links per cable such that at least the fundamental modes of the cable vibrations are represented can significantly account for the effect of cable vibrations. It is also observed that the equivalent modulus method cannot in any way account for the cable vibration effects. Key words: cable vibration, dynamic analysis, equivalent modulus, multiple links, seismic response, cable-stayed bridge.


2019 ◽  
Vol 29 (2) ◽  
pp. 74-100 ◽  
Author(s):  
Waseem Sarwar ◽  
Rehan Sarwar

Abstract Retrofit and structural design with vibration control devices have been proven repeatedly to be feasible seismic hazard mitigation approach. To control the structural response; supplemental energy dissipation devices have been most commonly used for energy absorption. The passive control system has been successfully incorporated in mid to high rise buildings as an appropriate energy absorbing system to suppress seismic and wind-induced excitation. The considerable theses that are highlighted include vibration control devices, the dynamic behavior of devices; energy dissipation mechanism, devices installation approach and building guidelines for structural analysis and design employing vibration control devices also, design concern that is specific to building with vibration control devices. The following four types of supplemental damping devices have been investigated in this review: metallic devices, friction devices, viscous fluid devices, and viscoelastic devices. Although numerous devices installation techniques available, more precisely, devices installation approaches have been reviewed in this paper, including Analysis and Redesign approach (Lavan A/R), standard placement approach, simplified sequential search algorithm, and Takewaki approach.


2018 ◽  
Vol 148 ◽  
pp. 02002
Author(s):  
Georgia Papastergiou ◽  
Ioannis Raftoyiannis

Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges and other cable structures. A significant problem which arose from the praxis is the cables’ rain-wind induced vibrations as these cables are subjected to environmental excitations. Rain-wind induced stay-cable vibrations may occur at different cable eigenfrequencies. Large amplitude Rain-Wind-Induced-Vibrations (RWIV) of stay cables are a challenging problem in the design of cable-stayed bridges. Several methods, including aerodynamic or structural means, have been investigated in order to control the vibrations of bridge’s stay-cables. The present research focuses on the effectiveness of a movable anchorage system with a Classical Rolling Pendulum Bearing (CRPB) device. An analytical model of cable-damper system is developed based on the taut string representation of the cable. The gathered integral-differential equations are solved through the use of the Lagrange transformation. . Finally, a case study with realistic geometrical parameters is also presented to establish the validity of the proposed system.


Author(s):  
Daniel Christianto ◽  
David Surachmat ◽  
Eric Leonardy ◽  
Wilsen Hartanto Lim ◽  
Mauren Theodora

1992 ◽  
Vol 58 (555) ◽  
pp. 3227-3232
Author(s):  
Masahiro YONEDA ◽  
Ken'ichi MAEDA ◽  
Jiroh ISEKI ◽  
Ikuo SHIMODA

Sign in / Sign up

Export Citation Format

Share Document