scholarly journals Adam’s block with first and second derivative future points for initial value problems in ordinary differential equations

Author(s):  
Samuel A. Ajayi ◽  
Kingsley O. Muka ◽  
Oluwasegun M. Ibrahim

In this paper, we present a family of stiffly stable second derivative block methods (SDBMs) suitable for solving first-order stiff ordinary differential equations (ODEs). The methods proposed herein are consistent and zero stable, hence, they are convergent. Furthermore, we investigate the local truncation error and the region of absolute stability of the SDBMs. A flowchart, describing this procedure is illustrated. Some of the developed schemes are shown to be A-stable and L-stable, while some are found to be A()-stable. The numerical results show that our SDBMs are stiffly stable and give better approximations than the existing methods in the literature.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document