scholarly journals A Family of Stiffly Stable Second Derivative Block Methods for Initial Value Problems in Ordinary Differential Equations

Author(s):  
Samuel A. Ajayi ◽  
Kingsley O. Muka ◽  
Oluwasegun M. Ibrahim

In this paper, we present a family of stiffly stable second derivative block methods (SDBMs) suitable for solving first-order stiff ordinary differential equations (ODEs). The methods proposed herein are consistent and zero stable, hence, they are convergent. Furthermore, we investigate the local truncation error and the region of absolute stability of the SDBMs. A flowchart, describing this procedure is illustrated. Some of the developed schemes are shown to be A-stable and L-stable, while some are found to be A()-stable. The numerical results show that our SDBMs are stiffly stable and give better approximations than the existing methods in the literature.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
S. A. M. Yatim ◽  
Z. B. Ibrahim ◽  
K. I. Othman ◽  
M. B. Suleiman

We derive a variable step of the implicit block methods based on the backward differentiation formulae (BDF) for solving stiff initial value problems (IVPs). A simplified strategy in controlling the step size is proposed with the aim of optimizing the performance in terms of precision and computation time. The numerical results obtained support the enhancement of the method proposed as compared to MATLAB's suite of ordinary differential equations (ODEs) solvers, namely, ode15s and ode23s.


Author(s):  
J. O. Kuboye ◽  
O. F. Quadri ◽  
O. R. Elusakin

In this work, numerical methods for solving third order initial value problems of ordinary differential equations are developed. Multi-step collocation is used in deriving the methods, where power series approximate solution is employed as a basis function. Gaussian elimination approach is considered in finding the unknown variables $a_j, j=0(1)8$ in interpolation and collocation equations, which are substituted into the power series to give the continuous implicit schemes. The discrete schemes and its derivatives are derived by evaluating the grid and non-grid points. These schemes are arranged in a matrix form to produce block methods. The order of the developed methods are found to be six. The numerical results proved the efficiency of the methods over the existing methods.


Sign in / Sign up

Export Citation Format

Share Document