scholarly journals Geostrophic adjustment with gyroscopic waves and the horizontal component of angular velocity of the Earth’s rotation

Author(s):  
G.M. Reznik ◽  
◽  
T.B. Tsybaneva ◽  
1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


1994 ◽  
Vol 276 ◽  
pp. 233-260 ◽  
Author(s):  
A. Colin de Verdière ◽  
R. Schopp

It is well known that the widely used powerful geostrophic equations that single out the vertical component of the Earth's rotation cease to be valid near the equator. Through a vorticity and an angular momentum analysis on the sphere, we show that if the flow varies on a horizontal scale L smaller than (Ha)1/2 (where H is a vertical scale of motion and a the Earth's radius), then equatorial dynamics must include the effect of the horizontal component of the Earth's rotation. In equatorial regions, where the horizontal plane aligns with the Earth's rotation axis, latitudinal variations of planetary angular momentum over such scales become small and approach the magnitude of its radial variations proscribing, therefore, vertical displacements to be freed from rotational constraints. When the zonal flow is strong compared to the meridional one, we show that the zonal component of the vorticity equation becomes (2Ω.Δ)u1 = g/ρ0)(∂ρ/a∂θ). This equation, where θ is latitude, expresses a balance between the buoyancy torque and the twisting of the full Earth's vorticity by the zonal flow u1. This generalization of the mid-latitude thermal wind relation to the equatorial case shows that u1 may be obtained up to a constant by integrating the ‘observed’ density field along the Earth's rotation axis and not along gravity as in common mid-latitude practice. The simplicity of this result valid in the finite-amplitude regime is not shared however by the other velocity components.Vorticity and momentum equations appropriate to low frequency and predominantly zonal flows are given on the equatorial β-plane. These equatorial results and the mid-latitude geostrophic approximation are shown to stem from an exact generalized relation that relates the variation of dynamic pressure along absolute vortex lines to the buoyancy field. The usual hydrostatic equation follows when the aspect ratio δ = H/L is such that tan θ/δ is much larger than one. Within a boundary-layer region of width (Ha)1/2 and centred at the equator, the analysis shows that the usually neglected Coriolis terms associated with the horizontal component of the Earth's rotation must be kept.Finally, some solutions of zonally homogeneous steady equatorial inertial jets are presented in which the Earth's vorticity is easily turned upside down by the shear flow and the correct angular momentum ‘Ωr2cos2(θ)+u1rCos(θ)’ contour lines close in the vertical–meridional plane.


1887 ◽  
Vol 41 (246-250) ◽  
pp. 337-342 ◽  

In the following note an objection is raised against Laplace’s method of treating these tides, and a dynamical solution of the problem, founded on a paper by Sir William Thomson, is offered. Let θ , Φ be the colatitude and longitude of a point in the ocean, let ξ and η sin θ be the displacements from its mean position of the water occupying that point at the time t , let h be the height of the tide, and let ℓ be the height of the tide according to the equilibrium theory; let n be the angular velocity of the earth’s rotation, g gravity, a the earth’s radius, and γ the depth of the ocean at the point θ , Φ .


Sign in / Sign up

Export Citation Format

Share Document