geomagnetic field
Recently Published Documents


TOTAL DOCUMENTS

3042
(FIVE YEARS 530)

H-INDEX

88
(FIVE YEARS 8)

2022 ◽  
Author(s):  
James W. Sears

ABSTRACT A robust, geology-based Proterozoic continental assembly places the northern and eastern margins of the Siberian craton against the southwestern margins of Laurentia in a tight, spoon-in-spoon conjugate fit. The proposed assembly began to break apart in late Neoproterozoic and early Paleozoic time. Siberia then drifted clockwise along the Laurussian margin on coast-parallel transforms until suturing with Europe in late Permian time. The proposed drift path is permitted by a geocentric axial dipole (GAD) magnetic field from Silurian to Permian time. However, the Proterozoic reconstruction itself is not permitted by GAD. Rather, site-mean paleomagnetic data plot ted on the reconstruction suggest a multipolar Proterozoic dynamo dominated by a quadrupole. The field may have resembled that of present-day Neptune, where, in the absence of a large solid inner core, a quadrupolar magnetic field may be generated within a thin spherical shell near the core-mantle boundary. The quadrupole may have dominated Earth’s geomagnetic field until early Paleozoic time, when the field became erratic and transitioned to a dipole, which overwhelmed the weaker quadrupole. The dipole then established a strong magnetosphere, effectively shielding Earth from ultraviolet-B (UV-B) radiation and making the planet habitable for Cambrian fauna.


2022 ◽  
Author(s):  
Anatoly Soloviev ◽  
Dmitry Peregoudov

Abstract In 2019, the WDC for Solar-Terrestrial Physics in Moscow digitized the archive of observations of the Earth’s magnetic field carried out by the Soviet satellites Kosmos-49 (1964) and Kosmos-321 (1970). As a result, the scientific community for the first time obtained access to a unique digital data set, which was registered at the very beginning of the scientific space era. This article sets out three objectives. First, the quality of the obtained measurements is assessed by their comparison with the IGRF reference field model. Secondly, we assess the quality of the models, which at that time were derived from the data of these two satellites and ground-based observations. Thirdly, we propose a new, improved model of the geomagnetic field secular variation based on the scalar measurements of the Kosmos-49 and Kosmos-321 satellites using modern mathematical methods.


Author(s):  
Giuseppe Bianco ◽  
Robin Clemens Köhler ◽  
Mihaela Ilieva ◽  
Susanne Åkesson

AbstractSpontaneous magnetic alignment is the simplest known directional response to the geomagnetic field that animals perform. Magnetic alignment is not a goal directed response and its relevance in the context of orientation and navigation has received little attention. Migratory songbirds, long-standing model organisms for studying magnetosensation, have recently been reported to align their body with the geomagnetic field. To explore whether the magnetic alignment behaviour in songbirds is involved in the underlying mechanism for compass calibration, which have been suggested to occur near to sunset, we studied juvenile Eurasian reed warblers (Acrocephalus scirpaceus) captured at stopover during their first autumn migration. We kept one group of birds in local daylight conditions and an experimental group under a 2 h delayed sunset. We used an ad hoc machine learning algorithm to track the birds’ body alignment over a 2-week period. Our results show that magnetic body alignment occurs prior to sunset, but shifts to a more northeast–southwest alignment afterwards. Our findings support the hypothesis that body alignment could be associated with how directional celestial and magnetic cues are integrated in the compass of migratory birds.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Emmanuel Nahayo ◽  
Monika Korte

AbstractA regional harmonic spline geomagnetic main field model, Southern Africa Core Field Model (SACFM-3), is derived from Swarm satellite and ground-based data for the southern African region, in the eastern part of the South Atlantic Anomaly (SAA) where the field intensity continues to decrease. Using SACFM-3 and the global CHAOS-6-×9 model, a detailed study was conducted to shed light on the high spatial and temporal geomagnetic field variations over Southern Africa between 2014 and 2019. The results show a steady decrease of the radial component Z in almost the entire region. In 2019, its rate of decrease in the western part of the region has reached high values, 76 nT/year and 78 nT/year at Tsumeb and Keetmanshoop magnetic observatories, respectively. For some areas in the western part of the region the radial component Z and field intensity F have decreased in strength, from 1.0 to 1.3% and from 0.9 to 1.2%, respectively, between the epochs 2014.5 and 2019.5. There is a noticeable decrease of the field intensity from the south-western coast of South Africa expanding towards the north and eastern regions. The results show that the SAA area is continuing to grow in the region. Abrupt changes in the linear secular variation in 2016 and 2017 are confirmed in the region using ground-based data, and the X component shows an abrupt change in the secular variation in 2018 at four magnetic observatories (Hermanus, Hartebeesthoek, Tsumeb and Keetmanshoop) that needs further investigation. The regional model SACFM-3 reflects to some extent these fast core field variations in the Z component at Hermanus, Hartebeesthoek and Keetmanshoop observatories. Graphical Abstract


Author(s):  
Haoting Dai ◽  
Zang Jingjing ◽  
Ying Wang ◽  
Yunlong Zhang ◽  
Yifeng Wei ◽  
...  

Abstract A method of identifying positron/electron species from the cosmic rays was studied in the DAMPE experiment. As there is no onboard magnet on the satellite, the different features imposed by the geomagnetic field on these two species were exploited for the particle identification. Application of this method to the simulation of on-orbit electrons/positrons/protons and the real flight data proves that separately measuring the CR positrons/electrons with DAMPE is feasible, though limited by the field of view for the present observation data. Further analysis on the positron flux with this method can be expected in the future.


2022 ◽  
Vol 12 (1) ◽  
pp. 413
Author(s):  
Victor Getmanov ◽  
Roman Sidorov ◽  
Alexei Gvishiani

This article describes a method for recognizing sudden commencement events using digital differentiating filters. This method is applied to INTERMAGNET observatory data. Maximum amplitude derivatives for the magnetic components (X, Y, Z) and the total intensity (F) of the geomagnetic field are introduced, and the decision-making rule is formulated. The authors developed a procedure for selecting optimal digital differentiating filters. Estimates of probabilities of correct and false recognition of sudden commencements were obtained. The calculations of the probabilistic characteristics have confirmed the effectiveness of the method.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 69
Author(s):  
Oswald Didier Franck Grodji ◽  
Vafi Doumbia ◽  
Paul Obiakara Amaechi ◽  
Christine Amory-Mazaudier ◽  
Kouassi N’guessan ◽  
...  

In this paper, we investigated the impact of solar flares on the horizontal (H), eastward (Y) and vertical (Z) components of the geomagnetic field during solar cycles 23 and 24 (SC23/24) using data of magnetometer measurements on the sunlit side of the Earth. We examined the relation between sunspot number and solar flare occurrence of various classes during both cycles. During SC23/24, we obtained correlation coefficient of 0.93/0.97, 0.96/0.96 and 0.60/0.56 for C-class, M-class and X-class flare, respectively. The three components of the geomagnetic field reached a peak a few minutes after the solar flare occurrence. Generally, the magnetic crochet of the H component was negative between the mid-latitudes and Low-latitudes in both hemispheres and positive at low latitudes. By contrast, the analysis of the latitudinal variation of the Y and Z components showed that unlike the H component, their patterns of variations were not coherent in latitude. The peak amplitude of solar flare effect (sfe) on the various geomagnetic components depended on many factors including the local time at the observing station, the solar zenith angle, the position of the station with respect to the magnetic equator, the position of solar flare on the sun and the intensity of the flare. Thus, these peaks were stronger for the stations around the magnetic equator and very low when the geomagnetic field components were close to their nighttime values. Both cycles presented similar monthly variations with the highest sfe value (ΔHsfe = 48.82 nT for cycle 23 and ΔHsfe = 24.68 nT for cycle 24) registered in September and lowest in June for cycle 23 (ΔHsfe = 8.69 nT) and July for cycle 24 (ΔHsfe = 10.69 nT). Furthermore, the sfe was generally higher in cycle 23 than in cycle 24.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yuri Pivovarenko

Due to the existence of the Earth's geomagnetic field, Lorentz’s forces constantly act on all sea currents. These forces distribute the charges of sea currents in both vertical and horizontal directions. In particular, this distribution manifests itself in the electric polarization of sea currents in directions perpendicular to them. So, earlier it was shown that the same Lorentz forces cause negative electrization of the Sargasso Sea. It is also shown here that the positive electrization of the western edge of the Gulf Stream and, consequently, the eastern coast of the United States is also caused by the Lorentz force arising from the interaction of this sea current with the vertical component of the geomagnetic field. It is also shown here that the positive electrization of east edge of California Current together with west coast of USA is also caused due to the similar reasons. All this allows us to conclude that an increased concentration of positive air ions is constantly retained in the air both in the east and in the west of the United States. This situation has caused the need for an analysis of how the predominantly positive electrization of the air affects both human health and their physical and mental activity. The results of this analysis are presented here. It is also shown that these results can be useful for residents of some other countries.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Ana G. Elias ◽  
Blas F. de Haro Barbas ◽  
Bruno S. Zossi ◽  
Franco D. Medina ◽  
Mariano Fagre ◽  
...  

The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. Since then, long-term changes in the upper atmosphere, and particularly in the ionosphere, have become a significant topic in global change studies with many results already published. There are also other ionospheric long-term change forcings of natural origin, such as the Earth’s magnetic field secular variation with very special characteristics at equatorial and low latitudes. The ionosphere, as a part of the space weather environment, plays a crucial role to the point that it could certainly be said that space weather cannot be understood without reference to it. In this work, theoretical and experimental results on equatorial and low-latitude ionospheric trends linked to the geomagnetic field secular variation are reviewed and analyzed. Controversies and gaps in existing knowledge are identified together with important areas for future study. These trends, although weak when compared to other ionospheric variations, are steady and may become significant in the future and important even now for long-term space weather forecasts.


Sign in / Sign up

Export Citation Format

Share Document