scholarly journals Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME hard

10.29007/f5wh ◽  
2020 ◽  
Author(s):  
Mnacho Echenim ◽  
Radu Iosif ◽  
Nicolas Peltier

The entailment between separation logic formulæ with inductive predicates, also known as sym- bolic heaps, has been shown to be decidable for a large class of inductive definitions [7]. Recently, a 2-EXPTIME algorithm was proposed [10, 14] and an EXPTIME-hard bound was established in [8]; however no precise lower bound is known. In this paper, we show that deciding entailment between predicate atoms is 2-EXPTIME-hard. The proof is based on a reduction from the membership problem for exponential-space bounded alternating Turing machines [5].

Author(s):  
Makoto Nagatomo ◽  
Shinnosuke Yano ◽  
Makoto Sakamoto ◽  
Satoshi Ikeda ◽  
Hiroshi Furutani ◽  
...  

1992 ◽  
Vol 111 (2) ◽  
pp. 273-281 ◽  
Author(s):  
D. A. Chalcraft

AbstractThe number of Seifert circuits in a diagram of a link is well known 9 to be an upper bound for the braid index of the link. The -breadth of the so-called P-polynomial 3 of the link is known 5, 2 to give a lower bound. In this paper we consider a large class of links diagrams, including all diagrams where the interior of every Seifert circuit is empty. We show that either these bounds coincide, or else the upper bound is not sharp, and we obtain a very simple criterion for distinguishing these cases.


Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Author(s):  
Serge Miguet ◽  
Annick Montanvert ◽  
P. S. P. Wang

Several nonclosure properties of each class of sets accepted by two-dimensional alternating one-marker automata, alternating one-marker automata with only universal states, nondeterministic one-marker automata, deterministic one-marker automata, alternating finite automata, and alternating finite automata with only universal states are shown. To do this, we first establish the upper bounds of the working space used by "three-way" alternating Turing machines with only universal states to simulate those "four-way" non-storage machines. These bounds provide us a simplified and unified proof method for the whole variants of one-marker and/or alternating finite state machine, without directly analyzing the complex behavior of the individual four-way machine on two-dimensional rectangular input tapes. We also summarize the known closure properties including Boolean closures for all the variants of two-dimensional alternating one-marker automata.


Sign in / Sign up

Export Citation Format

Share Document