scholarly journals Proceedings of the 6th IJCAR ATP System Competition (CASC-J6)

10.29007/lvcc ◽  
2018 ◽  
Author(s):  
Geoff Sutcliffe

The CADE ATP System Competition (CASC) evaluates the performance of sound, fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of problems solved, the number of acceptable proofs and models produced, and the average runtime for problems solved, in the context of a bounded number of eligible problems chosen from the TPTP problem library, and specified time limits on solution attempts. The 6th IJCAR ATP System Competition (CASC-J6) was held on 24th and 28th June 2012. The design of the competition and its rules, and information regarding the competing systems, are provided in this report.


2021 ◽  
pp. 1-15
Author(s):  
Geoff Sutcliffe

The CADE ATP System Competition (CASC) is the annual evaluation of fully automatic, classical logic Automated Theorem Proving (ATP) systems. CASC-J10 was the twenty-fifth competition in the CASC series. Twenty-four ATP systems and system variants competed in the various competition divisions. This paper presents an outline of the competition design, and a commentated summary of the results.



AI Magazine ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 99-101 ◽  
Author(s):  
Geoff Sutcliffe

The CADE ATP System Competition (CASC) is an annual evaluation of fully automatic automated theorem proving (ATP) systems for classical logic — the world championship for such systems. CASC provides a public evaluation of the relative capabilities of ATP systems, and aims stimulate ATP research towards the development of more powerful ATP systems. Over the years CASC has been a catalyst for impressive improvements in ATP.



Author(s):  
V.V. Rybin ◽  
E.V. Voronina

Recently, it has become essential to develop a helpful method of the complete crystallographic identification of fine fragmented crystals. This was maainly due to the investigation into structural regularity of large plastic strains. The method should be practicable for determining crystallographic orientation (CO) of elastically stressed micro areas of the order of several micron fractions in size and filled with λ>1010 cm-2 density dislocations or stacking faults. The method must provide the misorientation vectors of the adjacent fragments when the angle ω changes from 0 to 180° with the accuracy of 0,3°. The problem is that the actual electron diffraction patterns obtained from fine fragmented crystals are the superpositions of reflections from various fragments, though more than one or two reflections from a fragment are hardly possible. Finally, the method should afford fully automatic computerized processing of the experimental results.The proposed method meets all the above requirements. It implies the construction for a certain base position of the crystal the orientation matrix (0M) A, which gives a single intercorrelation between the coordinates of the unity vector in the reference coordinate system (RCS) and those of the same vector in the crystal reciprocal lattice base : .



2019 ◽  
Author(s):  
K Herdinai ◽  
S Urbán ◽  
Z Besenyi ◽  
L Pávics ◽  
N Zsótér ◽  
...  


2020 ◽  
Author(s):  
A Király ◽  
S Urbán ◽  
Z Besenyi ◽  
L Pávics ◽  
N Zsótér ◽  
...  


Author(s):  
Fernando Perez-Bueno ◽  
Miguel Vega ◽  
Valery Naranjo ◽  
Rafael Molina ◽  
Aggelos K. Katsaggelos


2010 ◽  
Vol 30 (11) ◽  
pp. 2932-2936
Author(s):  
Ling-zhong ZHAO ◽  
Xue-song WANG ◽  
Jun-yan QIAN ◽  
Guo-yong CAI




Sign in / Sign up

Export Citation Format

Share Document