scholarly journals Analysis of Electro-MHD of Third Grade Fuid Flow Through Porous Channel

2020 ◽  
Vol 13 (5) ◽  
pp. 1270-1284
Author(s):  
Sukanya Padhi ◽  
Itishree Nayak

This paper examines the Electro-MHD flow and heat transfer of a third grade fluid passing through a porous channel. An unidirectional and one-dimensional flow is propelled with the aid of lorentz force generated due to interaction of vertically applied magnetic field along with horizontally applied electric field. The equations of momentum and energy governing the third grade fluid flow are transformed to algebraic equation from nonlinear partial differential equation by implementing fully implicit finite difference scheme and solution is obtained by damped-Newton method. Lastly, the problem is simulated using MATLAB and the influence on velocity and temperature profiles with variation of non-dimensional parameters are depicted graphically. The noteworthy findings of this study is that the increasing values of elastic parameter α and non-Newtonian parameter γ diminishes the flow velocity and results in enhancement of temperature profile. A completely contrasting effect is observed for increasing values of strength of electric and magnetic field.

2014 ◽  
Vol 30 (5) ◽  
pp. 527-535 ◽  
Author(s):  
T. Aziz ◽  
F. M. Mahomed ◽  
A. Shahzad ◽  
R. Ali

AbstractThis work describes the time-dependent flow of an incompressible third grade fluid filling the porous half space over an infinite porous plate. The flow is induced due to the motion of the porous plate in its own plane with an arbitrary velocityV(t). Translational type symmetries are employed to perform the travelling wave reduction into an ordinary differential equation of the governing nonlinear partial differential equation which arises from the laws of mass and momentum. The reduced ordinary differential equation is solved exactly, for a particular case, as well as by using the homotopy analysis method (HAM). The better solution from the physical point of view is argued to be the HAM solution. The essentials features of the various emerging parameters of the flow problem are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document