scholarly journals Immune polychemotherapy regimen choice in B-cell non-Hodgkin lymphoma of high and low malignancy based on the identification of the mutational c-myc and BCL 2 genes

Author(s):  
Dilyara R. Kaidarova ◽  
Raiymkul K. Karakulov ◽  
Saule T. Gabbasova ◽  
Meruert K. Karazhanova ◽  
Svetlana A. Lyubko

Introduction: The relevance of research is conditioned by the study of the gene expression profile for the identification of molecular subgroups of non-Hodgkin B-cell lymphomas (NHBCLs) in haematology. Aim: The aim of this research was to study the gene expression profile with the identification of molecular subgroups in patients with NHBCLs for personalised treatment. Material and methods: This paper is aimed at analysing the frequency and role of expression of c-myc, B-cell lymphoma 2 (BCL 2) proteins and the Ki 67 proliferative index in patients with NHBCLs and conducting personalised therapy to improve the immediate effectiveness and immediate treatment results. Results and discussion: The paper presents the results of the use of high-dose polychemotherapy (PCT) in 9 patients out of 80 with NHBCL during co-expression of the c-myc, BCL 2 mutational gene and with high values of the Ki 67 proliferative index. High-dose chemotherapy (HDCT) was performed according to the R+HyperCVAD scheme (6 courses) and hematopoietic stem cell (HSC) autotransplantation improved the immediate effectiveness of therapy, with a complete remission rate of 80% and an event-free survival of 28 months. Conclusions: The study of molecular genetic characteristics in 80 patients with NHBCLs revealed co-expression of the c-myc and BCL 2 mutational gene in 9 out of 80 patients, and they differed in the aggressive course, ‘poor’ response to therapy, which predetermined the use of high-dose PCT with transplantation of autologous stem cells.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 803-803
Author(s):  
Fabrice Jardin ◽  
Jean-Philippe Jais ◽  
Thierry Jo Molina ◽  
Francoise Parmentier ◽  
Jean-Michel Picquenot ◽  
...  

Abstract Genomic gains and losses play a crucial role in the development and progression of DLBCL. Some gains or losses are associated with particular morphologic or clinical manifestations and correlate with the “germinal center B-cell like” (GCB)/non-GCB phenotype, as defined by gene expression profiles (GEP). We previously developed a reliable and routinely single applicable PCR assay, which provided information regarding gain/loss of relevant genes, and prognosis in DLBCL, termed QMPSF (Multiplex PCR of Short Fluorescent Fragments). Here, we combined GEP and QMPSF approaches to delineate molecular pathways related to recurrent gene copy number abnormalities (GCNA) and assess their prognosis value in patients treated by R-CHOP. For this purpose a series of 69 newly diagnosed DLBCL, included in the 98–5 GELA trial with available tumor DNA was studied (median age = 69 years [59–79], IPI2–3: 64%; 4–5: 36%, 40 treated by R-CHOP and 29 by CHOP). A single QMPSF assay, validated by CGH array, to detect GCNA of 8 relevant genes including SIM1 (6q16), MYC (8q24), CDNK2A (9p21), RB1 (13q14), REL (2p13), BCL2 (18q21), TP53 (17p13), and CDKN1B (12p13) was performed. In addition a dedicated QMPSF assay that provides a “bar code” of the 9p21 locus containing CDKN2A (p16INK4a and p14ARF) and CDKN2B (p15INK4b) was designed. To delineate specific gene expression profile according to recurrent GCNA a subset of 52 patients were studied by both GEP (Affymetrix U133A) and QMPSF technologies. Gains of MYC, BCL2, and REL were observed in 13, 28 and 20 % respectively. DNA copy losses of TP53, CDNK2A, RB1 and SIM1 were observed in 9, 40, 6 and 17 % of cases respectively. Using supervised analysis, we delineated specific GEP according to the most frequent GCNA detected by QMPSF. Interestingly, a signature related to 9p21 locus (CDKN2A/CDKN2B) deletion was associated with an overexpression of several ribosome machinery coding genes and the involvement of distinct antiapoptotic molecular mechanisms. Subsequent genomic analysis with the dedicated assay indicated that in most of cases deletions were homozygous and abolished simultaneously p14arf and p16INK4a expression. With a median follow-up of 81 months, CDKN2A deletion, strongly correlates to a poor outcome in the entire cohort (5y OS=25% respectively vs.60% for patients in germline configuration, p=.003) and in the subgroup of patients treated by R-CHOP (5y OS=40% vs.70%, p=.04). Furthermore, prognosis impact of GCNA involving CDKN2A was validated in an independent set of 35 patients treated by R-CHOP. To conclude, combination of QMPSF and GEP may constitute a powerful approach to delineate new genomic pathways with prognosis impact in DLBCL. Notably, CDKN2A/CDKN2B loss, detected in more than one third of DLBCL patients constitutes a strong factor of chemoresistance that is not overcome by R combination. GEP indicates that this may be a consequence of an independent p14arf/p53 pathway, involving the well-established p14arf related ribosome regulation function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4134-4134
Author(s):  
Gonzalo Gutierrez-Garcia ◽  
Teresa Cardesa ◽  
Luis Colomo ◽  
Fina Climent ◽  
Santiago Mercadal ◽  
...  

Abstract Abstract 4134 Gene expression profile (GEP) allows to distinguish two groups with different origin in patients with diffuse large B-cell lymphoma (DLBCL): germinal-center (GC) and activated (ABC), with the latter having a significantly poorer outcome. However, GEP is a technique not available in current clinical practice. For this reason, attempts to reproduce GEP data by immunophenotyping algorithms have been made. The aim of this study was to apply the most popular algorithms in a series of patients with DLBCL homogeneously treated with immunochemotherapy, in order to assess the correlation with GEP data and their usefulness to predict response and outcome of the patients. One hundred fifty seven patients (80M/77F; median age 65 years) diagnosed with DLBCL in 5 institutions of the Grup per l'Estudi dels Limfomes de Catalunya I Balears (GELCAB) during a 5-year period, treated with Rituximab-containing regimens (in most cases, R-CHOP), in whom histological material to construct a tissue microarrays (TMA) was available, constituted the subjects of the present study. Four algorithms were applied: Colomo (Blood 2003, 101:78) using CD10, bcl-6 and MUM1/IRF4; Hans (Blood 2004, 103:275) using CD10, bcl-6 and MUM1/IRF4; Muris (J Pathol 2006, 208:714) using CD10 and MUM1/IRF4, and Choi (Clin Cancer Res 2009, 15:5494), using CD10, bcl-6, GCET1, FOXP1 and MUM1/IRF4. The thresholds used were those previously described. GEP studies were performed in 62 patients in whom fresh frozen material was available. Main clinical and evolutive data were recorded and analyzed. The proportion of positive cases for the different single antigens was as follows: CD10 26%, bcl-6 64%, GCET1 46%, FOXP1 78% and MUM1/IRF4 28%. The distribution of cases (GC vs. non-GC) according to the algorithms is detailed in the table. In 88 of 110 patients (80%) with all the antigens available, the patients were allocated in the same group (either GC or non-GC). When the immunochemistry was compared with GEP data, the sensitivity in the GC group was 59%, 52%, 70% and 40% for Colomo, Hans, Muris and Choi algorithms, respectively. The sensitivity in the non-GC group was 81%, 85%, 62% and 84%, respectively. On the other hand, the positive predictive value (PPV) in the GC group was 81%, 83%, 72% and 77%, respectively. In non-GC subset the PPV for the different algorithms was 59%, 55%, 72% and 52%, respectively. We observed a higher percentage of misclassified cases in the GC-phenotype subset than in the non-GC subgroup. None of the immunohistochemical algorithms showed a significant superiority as surrogate of GEP information among the others. The ability of GEP groups as well as of groups defined by the algorithms to predict complete response (CR) rate, progression-free survival (PFS) and overall survival (OS) of the patients is showed in the table. Thus, whereas the GEP groups showed significant prognostic value for CR rate, PFS and OS, none of the immunohistochemical algorithms were able to predict the outcome. In conclusion, in a homogeneous series of DLBCL patients treated with immunochemotherapy, the different immunohistochemical algorithms were not able to mimic the GEP information. The prognostic impact of the groups defined by immunohistochemistry (GC vs. non-GC) was particularly low. N (%) CR rate N (%) 5-year PFS (%) 5-year OS (%) Colomo algorithm GC 53 (44) 39 (74) 48 54 Non-GC 68 (56) 53 (78) 55 62 Hans algorithm GC 61 (41) 47 (77) 54 60 Non-GC 88 (59) 67 (76) 52 59 Muris algorithm GC 87 (57) 63 (72) 48 57 Non-GC 65 (43) 51 (78) 56 63 Choi algorithm GC 45 (33) 32 (71) 48 54 Non-GC 90 (67) 70 (78) 52 61 Gene expression profile 30 (58) 25 (83) 76* 80** GC Activated 22 (42) 17 (77) 31* 45** * p=0.005, ** p=0.03. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document