An Integrated Approach to Map Tubular Degradation in ONWJ Field

Author(s):  
F. Sajjad

Tubular engineering is essential for production operations, especially in mature oil and gas fields. The complex interaction between hydrocarbon and non-hydrocarbon components will eventually result in tubulars deteriorating into poor condition and performance. 1500 well examples are located in field X, Indonesia, in which 70% of them have been producing for more than 30 years, indicating the existence of tubular thinning and deformation. The degradation is slowly developed until severe alterations are observed on the tubing body. The situation from the aforementioned wells is complicated since tubular deformation inhibits the flow as well as increasing the risk of wellbore collapse and complications during sidetracking, infill drilling, workover, and other production enhancement measures. These wells are subjected to costly remedial measures and often result in unsuccessful recovery efforts. The authors present the degree of tubular degradation and its effect to overall field performance and the possibility of tubular failure. Current field practices do not encourage a thorough tubular assessment during early life of the wells, which create complex problems at a later stage. Eventually, the study indicates that proper planning and preventive actions should be performed gradually before tubular degradation becomes severe. This paper presents a field experience-based model that is useful in developing new areas from the perspective of well and facilities integrity, so that the degradation-related issues can be recognized earlier. We used multiple case studies with actual field data to identify the dominant mechanism for tubular degradation. The case study presented a model that is capable to describe the extent of tubular degradation in offshore, mature wells that are prone to stress from its surroundings. Lessons learned from these failures encourages us to conduct a comprehensive study on tubular degradation. It is performed to model the incorporation of multiple degradation mechanisms on tubular performance.

Georesursy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 10-18 ◽  
Author(s):  
Tako Koning

Basement rocks are important oil and gas reservoirs in a number of basins in the world. The basement oil and gas play has intensified in the past decade with significant basement discoveries. This paper provides a technical review of select basement oil and gas fields in Asia, Africa and the Americas. “Best practices” for exploring and developing basement fields are reviewed. Failures are also considered since basement reservoirs can be very complicated and unpredictable. Preference scale for basement reservoir rock types is presented. The opinion of this author is that the best rock types are fractured quartzites or granites since they are brittle and thus fracture optimally. Based on international experience, recommendations on the study of crystalline basement for oil and gas and the development of deposits in it are given.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document