produced water
Recently Published Documents


TOTAL DOCUMENTS

3079
(FIVE YEARS 976)

H-INDEX

65
(FIVE YEARS 14)

2022 ◽  
Vol 45 ◽  
pp. 102486
Author(s):  
Harry Finklea ◽  
Lian-Shin Lin ◽  
Golnoosh Khajouie
Keyword(s):  

Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133186
Author(s):  
Jonnathan Cabrera ◽  
Yexin Dai ◽  
Muhammad Irfan ◽  
Yang Li ◽  
Felix Gallo ◽  
...  

2022 ◽  
Vol 304 ◽  
pp. 114189
Author(s):  
Josenilda Carlos dos Santos ◽  
Déborah Romaskevis Gomes Lopes ◽  
Lívia Carneiro Fidélis Silva ◽  
José Luiz Lima Ramos ◽  
Roberto Sousa Dias ◽  
...  

Author(s):  
L. Plassard ◽  
A. Mouret ◽  
C. Nieto-Draghi ◽  
C. Dalmazzone ◽  
D. Langevin ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Erling Rytter ◽  
Christian Aaserud ◽  
Anne-Mette Hilmen ◽  
Edvard Bergene ◽  
Anders Holmen

CO hydrogenation has been studied on cobalt foils as model catalysts for Fischer–Tropsch (FT) synthesis. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 °C, 1 bar, and H2/CO = 3 has been studied in a microreactor. The foils were examined by scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments. The mechanism is likely an increase in the available cobalt surface area from progressively deeper oxidation of the foil, supported by surface roughness detected by SEM. The highest FT activity was obtained using a reduction time of only 5 min (compared to 1 and 30 min). Prolonged reduction caused the sintering of cobalt crystallites, while too short of a reduction time led to incomplete reduction and small crystallites susceptible to low turn-over frequency from structure sensitivity. Larger crystals from longer reduction times gave increased selectivity to heavier components. The paraffin/olefin ratio increased with the increasing number of pretreatments due to olefin hydrogenation favored by enhanced cobalt site density. From the results, it is suggested that olefin hydrogenation is not structure sensitive, and that mass transfer limitations may occur depending on the pretreatment procedure. Produced water did not influence the results for the low conversions experienced in the present study (<6%).


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 418
Author(s):  
Leif Hansen ◽  
Mads Valentin Bram ◽  
Simon Pedersen ◽  
Zhenyu Yang

Offshore produced water treatment (PWT) accounts for cleaning the largest waste stream in the offshore oil and gas industry. If this separation process is not properly executed, large amounts of oil are often directly discharged into the ocean. This work extends two grey-box models of a three-phase gravity separator and a deoiling hydrocyclone, and combines them into a single plant-wide model for testing PWT control solutions in a typical process configuration. In simulations, three known control solutions—proportional-integral-derivative (PID) control, H∞ control, and model predictive control (MPC)—are compared on the combined model to evaluate the separation performance. The results of the simulations clearly show what performance metrics each controller excels at, such as valve wear, oil discharge, oil-in-water (OiW) concentration variance, and constraint violations. The work incentivizes future control to be based on operational policy, such as defining boundary constraints and weights on oil discharge, rather than maintaining conventional intermediate performance metrics, such as water level in the separation and pressure drop ratio (PDR) over the hydrocyclone.


Chemosphere ◽  
2022 ◽  
pp. 133561
Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Pei Sean Goh ◽  
Ahmad Fauzi Ismail ◽  
Arthanareeswaran Gangasalam ◽  
Nor Akalili Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document