scholarly journals Footstep Recognition Using Mel Frequency Cepstral Coefficients and Artificial Neural Network

2020 ◽  
Vol 4 (3) ◽  
pp. 497-503
Author(s):  
Thasya Nurul Wulandari Siagian ◽  
Hilal Hudan Nuha ◽  
Rahmat Yasirandi

Footstep recognition is relatively new biometrics and based on the learning of footsteps signals captured from people walking on the sensing area. The footstep signals classification process for security systems still has a low level of accuracy. Therefore, we need a classification system that has a high accuracy for security systems. Most systems are generally developed using geometric and holistic features but still provide high error rates. In this research, a new system is proposed by using the Mel Frequency Cepstral Coefficients (MFCCs) feature extraction, because it has a good linear frequency as a copycat of the human hearing system and Artificial Neural Network (ANN) as a classification algorithm because it has a good level of accuracy with a dataset of 500 recording footsteps. The classification results show that the proposed system can achieve the highest accuracy of validation loss value 57.3, Accuracy testing 92.0%, loss value 193.8, and accuracy training 100%, the accuracy results are an evaluation of the system in improving the foot signal recognition system for security systems in the smart home environment.

2017 ◽  
Vol 7 (1) ◽  
pp. 48-57
Author(s):  
Cigdem Bakir

Currently, technological developments are accompanied by a number of associated problems. Security takes the first place amongst such problems. In particular, biometric systems such as authentication constitute a significant fraction of the security problem. This is because sound recordings having connection with various crimes are required to be analysed for forensic purposes. Authentication systems necessitate transmission, design and classification of biometric data in a secure manner. The aim of this study is to actualise an automatic voice and speech recognition system using wavelet transform, taking Turkish sound forms and properties into consideration. Approximately 3740 Turkish voice samples of words and clauses of differing lengths were collected from 25 males and 25 females. The features of these voice samples were obtained using Mel-frequency cepstral coefficients (MFCCs), Mel-frequency discrete wavelet coefficients (MFDWCs) and linear prediction cepstral coefficient (LPCC). Feature vectors of the voice samples obtained were trained with k-means, artificial neural network (ANN) and hybrid model. The hybrid model was formed by combining with k-means clustering and ANN. In the first phase of this model, k-means performed subsets obtained with voice feature vectors. In the second phase, a set of training and tests were formed from these sub-clusters. Thus, for being trained more suitable data by clustering increased the accuracy. In the test phase, the owner of a given voice sample was identified by taking the trained voice samples into consideration. The results and performance of the algorithms used for classification are also demonstrated in a comparative manner. Keywords: Speech recognition, hybrid model, k-means, artificial neural network (ANN).


Author(s):  
Gizachew Belayneh Gebre Et. al.

In this artificial intelligence time, speaker recognition is the most useful biometric recognition technique. Security is a big issue that needs careful attention because of every activities have been becoming automated and internet based. For security purpose, unique features of authorized user are highly needed. Voice is one of the wonderful unique biometric features. So, developing speaker recognition based on scientific research is the most concerned issue. Nowadays, criminal activities are increasing day to day in different clever way. So, every country should have strengthen forensic investigation using such technologies. The study was done by inspiration of contextualizing this concept for our country. In this study, text-independent Amharic language speaker recognition model was developed using Mel-Frequency Cepstral Coefficients to extract features from preprocessed speech signals and Artificial Neural Network to model the feature vector obtained from the Mel-Frequency Cepstral Coefficients and to classify objects while testing. The researcher used 20 sampled speeches of 10 each speaker (total of 200 speech samples) for training and testing separately. By setting the number of hidden neurons to 15, 20, and 25, three different models have been developed and evaluated for accuracy. The fourth-generation high-level programming language and interactive environment MATLAB is used to conduct the overall study implementations. At the end, very promising findings have been obtained. The study achieved better performance than other related researches which used Vector Quantization and Gaussian Mixture Model modelling techniques. Implementable result could obtain for the future by increasing number of speakers and speech samples and including the four Amharic accents.


2019 ◽  
Vol 130 ◽  
pp. 01022
Author(s):  
Pranoko Rivandi ◽  
Astuti Winda ◽  
Dewanto Satrio ◽  
Mahmud Iwan Solihin

Automated vehicle security system plays an important rule in nowadays advance automotive technology. One of the methods which can be applied for a security system is based on biometric identification system. Fingerprint recognition is one of the biometric systems that can be applied to the security system. In this work, fingerprint recognition system to start the motorcycle engine is developed. The fingerprint of the owner and other authorized persons will be stored into the database, then while the time of starting the engine of the vehicle, the fingerprint will be validated with the database. The minutiae extraction method is applied to find the difference of fingerprint each other after turn the image into grayscale and thinning. After the extraction, the next step is finding the ridge edge and bifurcation. The result of the image will be used as input to the Artificial Neural Network (ANN) to recognize authorized person only. The experiment of fingerprint recognition system shows that automatic start-stop engine using fingerprint recognition system based minutiae extraction and Artificial Neural Network (ANN) has accuracy 100 % and 100 %, respectively.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document