scholarly journals Comparison of Bayesianneural Network, Artificial Neural Network Gene Expression Programming in River Water Quality (Case Study: Belkhviachay river)

2017 ◽  
Vol 8 (15) ◽  
pp. 13-24
Author(s):  
محمدعلی قربانی ◽  
رضا دهقانی ◽  
◽  
2020 ◽  
Author(s):  
Jibril Abdulsalam ◽  
Abiodun Ismail Lawal ◽  
Ramadimetja Lizah Setsepu ◽  
Moshood Onifade ◽  
Samson Bada

Abstract Globally, the provision of energy is becoming an absolute necessity. Biomass resources are abundant and have been described as a potential alternative source of energy. However, it is important to assess the fuel characteristics of the various available biomass sources. Soft computing techniques are presented in this study to predict the mass yield (MY), energy yield (EY), and higher heating value (HHV) of hydrothermally carbonized biomass by using Gene Expression Programming (GEP), multiple-input single output-artificial neural network (MISO-ANN), and Multilinear regression (MLR). The three techniques were compared using statistical performance metrics. The coefficient of determination (R2), mean absolute error (MAE), and mean bias error (MBE) were used to evaluate the performance of the models. The MISO-ANN with 5-10-10-1 and 5-15-15-1 network architectures provided the most satisfactory performance of the three proposed models (R2 = 0.976, 0.955, 0.996; MAE = 2.24, 2.11, 0.93; MBE = 0.16, 0.37, 0.12) for MY, EY and HHV respectively. The GEP technique’s ability to predict hydrochar properties based on the input parameters was found to be satisfactory, while MLR provided an unsatisfactory predictive model. Sensitivity analysis was conducted, and the analysis revealed that volatile matter (VM) and temperature (Temp) have more influence on the MY, EY, and HHV.


In water resource management and planning the Rainfall-Runoff models play a crucial role and depends mainly on the data available for planning activities. The rainfall-runoff relationship comes under the nonlinear and complex hydrological Event. In the present study two data driven modeling approaches, Artificial Neural Network (ANN) and Gene Expression Programming (GEP) has been used for modeling of rainfall-runoff process as these methods does not consider the physical nature of the process, which is complex to understand. GEP and ANN are used to model rainfall-runoff relationship for Dindori catchment in upper Narmada River Basin. Daily hydro-meteorological data of Dindori gauging station and precipitation of the catchment for a period of eighteen years were used as input in the model design. Various combinations of input variables for training and testing of models were selected based on statistical parameters. The performance of model was evaluated in term of the root mean square error (RMSE), coefficient of determination, RMSE to standard deviation ratio (RSR) and Nash Sutcliffe Efficiency. The results obtained after applying the two techniques were compared. Which indicates that GEP performed better in all performance evaluation parameters (R2 is 0.92) then ANN (R2 0.90) and is able to give mathematical relationship for rainfallrunoff modeling.


Sign in / Sign up

Export Citation Format

Share Document