atmospheric temperature
Recently Published Documents


TOTAL DOCUMENTS

1411
(FIVE YEARS 363)

H-INDEX

61
(FIVE YEARS 7)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 79-82
Author(s):  
RAJESH KHAVSE ◽  
J.L. CHAUDHARY

Climate change is a natural phenomenon but in present decades its variability of change mainly due to anthropogenic activities is alarming. Agriculture of Chhattisgarh state is mainly dependant on monsoon rain and its distribution. Considering this fact, the present study  has been tried to analyze the most important climatic variables,              viz., precipitation and temeperature for analyzing their trend in the area. The trends of maximum atmospheric temperature, rainfall and rainy days are analysed statistically for meteorological data of Jagdalpur station of Bastar district, over last three decades stretching between years 1980 to 2014. The long term change in temperature, rainfall and rainy days has been analysed by correlation and linear trend analysis. The annual MMAX temperature has decreased at a rate of -0.465 °C per year during this period at Jagdalpur station and decreasing trend for rainy days during monsoonal season (June to September) is also found and is confirmed by Mann-Kendall trend test. Very weak increasing trend is observed in total month rainfall (TMRF) during season June to September. There are decreasing trends of mean monthly rainfall and south west (June - September) rainfall observed in Bastar district of Chhattisgarh. The agricultural planning and utilization of water is dependent on monsoon rainfall and more than 75% of rainfall occurring during the monsoon season is uneven both in time and space. Therefore its analysis is important for crop planning.  


2022 ◽  
Vol 19 (1) ◽  
pp. 223-239
Author(s):  
Rémy Asselot ◽  
Frank Lunkeit ◽  
Philip B. Holden ◽  
Inga Hense

Abstract. We investigate the ways in which marine biologically mediated heating increases the surface atmospheric temperature. While the effects of phytoplankton light absorption on the ocean have gained attention over the past years, the impact of this biogeophysical mechanism on the atmosphere is still unclear. Phytoplankton light absorption warms the surface of the ocean, which in turn affects the air–sea heat and CO2 exchanges. However, the contribution of air–sea heat versus CO2 fluxes in the phytoplankton-induced atmospheric warming has not been yet determined. Different so-called climate pathways are involved. We distinguish heat exchange, CO2 exchange, dissolved CO2, solubility of CO2 and sea-ice-covered area. To shed more light on this subject, we employ the EcoGEnIE Earth system model that includes a new light penetration scheme and isolate the effects of individual fluxes. Our results indicate that phytoplankton-induced changes in air–sea CO2 exchange warm the atmosphere by 0.71 ∘C due to higher greenhouse gas concentrations. The phytoplankton-induced changes in air–sea heat exchange cool the atmosphere by 0.02 ∘C due to a larger amount of outgoing longwave radiation. Overall, the enhanced air–sea CO2 exchange due to phytoplankton light absorption is the main driver in the biologically induced atmospheric heating.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Shuhei Tsuji ◽  
Koshun Yamaoka ◽  
Ryoya Ikuta

AbstractWe developed a method to detect attenuation changes during seismic wave propagation excited by precisely controlled artificial seismic sources, namely Accurately Controlled Routinely Operated Signal System (ACROSS), and applied it to monitor the temporal changes for in situ data collected by previous studies. Our method, together with the use of the ACROSS sources, is less susceptible to noise level changes, from which conventional methods such as envelope calculation suffer. The method utilizes the noise level that is independently estimated in the frequency domain and eliminates the influence of the noise from the observed signal. For performance testing, we applied this method to a dataset that was obtained in an experiment at Awaji Island, Japan, from 2000 to 2001. We detected a change in amplitude caused by rainfall, variation in atmospheric temperature, and coseismic ground motions. Among them, coseismic changes are of particular interest because there are limited studies on coseismic attenuation change, in contrast to many studies on coseismic velocity decrease. At the 2000 Western Tottori earthquake (MW = 6.6, epicenter distance of 165 km), a sudden decrease in amplitude of up to 5% was observed. The coseismic amplitude reduction and its anisotropic characteristics, which showed a larger reduction in the direction of the major axis of velocity decrease, were consistent with the opening of fluid-filled cracks, as proposed by previous studies. The $$\Delta {Q}^{-1}$$ Δ Q - 1 corresponding to the amplitude change gives similar values to those reported in previous studies using natural earthquakes. Graphical Abstract


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 471-480
Author(s):  
S. PAL ◽  
J. DAS ◽  
P. SENGUPTA ◽  
S. K. BANERJEE

In this paper, a neural network based forecasting model for the maximum and the minimum temperature for the ground level is proposed. A backpropagation method of gradient-decent learning in multi-layer perceptron (MLP) type of neural network with only one hidden layer is considered. This network consists of 25 input nodes and two output nodes. The network is trained with a varying number of nodes in the hidden layer using a set of training sample and each of them is tested with a set of test sample. It accepts previous two consecutive days information (such as pressures, temperatures, relative humidities, etc.) as inputs for the estimation of the maximum and the minimum temperature as output. The network with 20 or less neurons in the hidden layer is found to be "optimum" and it produces an error within ±2° C for 80% of test cases.


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Subrata Kundu ◽  
Swati Chowdhury ◽  
Soujan Ghosh ◽  
Sudipta Sasmal ◽  
Dimitrios Z. Politis ◽  
...  

Atmospheric disturbances caused by seismic activity are a complex phenomenon. The Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) (LAIC) mechanism gives a detailed idea to understand these processes to study the possible impacts of a forthcoming earthquake. The atmospheric gravity wave (AGW) is one of the most accurate parameters for explaining such LAIC process, where seismogenic disturbances can be explained in terms of atmospheric waves caused by temperature changes. The key goal of this work is to study the perturbation in the potential energy associated with stratospheric AGW prior to many large earthquakes. We select seven large earthquakes having Richter scale magnitudes greater than seven ( M > 7.0 ) in Japan (Tohoku and Kumamoto), Mexico (Chiapas), Nepal, and the Indian Ocean region, to study the intensification of AGW using the atmospheric temperature profile as recorded from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite. We observe a significant enhancement in the potential energy of the AGW ranging from 2 to 22 days prior to different earthquakes. We examine the conditions of geomagnetic disturbances, typhoons, and thunderstorms during our study and eliminate the possible contamination due to these events.


2022 ◽  
Author(s):  
MD MAHFUZUR RAHMAN

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with 87.68% fill factor rate making it very thin, flexible and resilient providing diverse operational capabilities.


2022 ◽  
Author(s):  
MD MAHFUZUR RAHMAN

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with 87.68% fill factor rate making it very thin, flexible and resilient providing diverse operational capabilities.


Author(s):  
Thuanne Braúlio Hennig ◽  
Paulo Roger Lopes Alves ◽  
Aline Schiehl ◽  
Rafael Soares de Araújo ◽  
Liziara da Costa Cabrera ◽  
...  

2022 ◽  
Vol 9 (2) ◽  
pp. 3329-3339
Author(s):  
Harsha Dahanayake ◽  
Deepthi Wickramasinghe ◽  
DDGL Dahanayaka

Microclimate regulation is one of the most significant ecosystem services provided by wetlands. The present study attempted to investigate the cooling effect provided by Muthurajawela, a coastal Ramsar wetland using Remote Sensing and GIS. The variation of Land Surface Temperatures (LST) over different land use categories of natural (water bodies, marsh, thick vegetation, grassland) and anthropogenic (built-up areas, coconut cultivations and bare lands) areas in 2015 and 2020. Parameters including Satellite Brightness Temperature, Normalized Difference Vegetation Index, Proportion of Vegetation and Land Surface Emissivity were calculated along eight transects starting from the center of the water body and extending up to 5 km from the boundary of the wetland. The results revealed that LST over areas under natural land cover (2015 - mean 25.040C, 2020 - mean 23.360C) were significantly lower than that of areas under anthropogenic influence (2015 - mean 26.520C and 2020 - mean 26.220C). The lowest increase of LST was over the water body and the highest was over the built-up areas indicating the buffering capacity of wetlands. As air temperatures are highly linked to LST, our findings suggest that wetlands contribute to lower atmospheric temperature and offer cooling effects during dry months. Acknowledging the importance of wetlands in reducing temperature, at least in a local scale, justifies the need of conserving these ecosystems, as seeking mitigatory measures for climate change driven frequent heating effects is challenging.


Author(s):  
Rushikesh Shinde

Abstract: Refrigeration is one of the core branch in the field of thermal engineering. In other words, we can say that the refrigeration is the sister branch of the thermal engineering or thermal science. The main purpose of refrigeration is to maintain the low temperature than the atmospheric temperature or simply room temperature. In a few decades, the new trends in the field of the refrigeration and air condition has been changed drastically. The need for the development of new refrigeration processes is to achieve possible minimum temperature by the liquefaction techniques such as linde claude system. The new field known as cryogenics is developed in recent few years whose main aim is to achieve the lowest possible temperature in order of -100 to - 1500 C. the cryogenics has a wide veriety of the applications ranging from space research to the medical science which can be supposed as a science fiction in the real life. Our research work is based on the analysis of the cryogenic treatment to the lithium ion battery to improve the performance of the battery for the long period. Keywords: Cryogenics, lithium ion batteries, manganese, density, conductivity


Sign in / Sign up

Export Citation Format

Share Document