Applied Water Science
Latest Publications


TOTAL DOCUMENTS

1503
(FIVE YEARS 630)

H-INDEX

42
(FIVE YEARS 12)

Published By Springer-Verlag

2190-5495, 2190-5487

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ramsha Khan ◽  
Abhishek Saxena ◽  
Saurabh Shukla ◽  
Pooja Goel ◽  
Prosun Bhattacharya ◽  
...  

AbstractThe conflict between the vitality of natural ecosystem versus artificially developed systems has existed since decades. The ecological sensitivity and socio-economic aspects associated with riverfront development along rivers have attracted the attention of environmentalists and ecologists across the globe. The present study evaluates the impacts of channelization and riverfront development on the water quality of river Gomti through Water Pollution Index (WPI) and other statistical tools. Of the total studied sites, 75% were found to be in the ‘highly polluted’ category even after the development of riverfront. An approximate increase of 274.5% and 171.76% was witnessed in the WPI values at the midstream sites of Kudiaghat and Daliganj, respectively. This increase in the WPI values clearly stated the deteriorated water quality of river Gomti after the channelization. The major issue of domestic sewage discharge with partial or no treatment into the river seems to be unresolved even after a considerable period of riverfront development. This study can provide a reference database toward development of such projects across the globe.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaitanya B. Pande ◽  
Kanak N. Moharir ◽  
Sudhir Kumar Singh ◽  
Ahmed Elbeltagi ◽  
Quoc Bao Pham ◽  
...  

AbstractThe ecological sustainable development and planning of groundwater resources is an excessive challenge for many countries currently facing water insufficiency. The main focus of this work was to determine the direction of groundwater flow, head value, and water level using the steady-state finite difference model (MODFLOW software) in basaltic formations in Maharashtra, India. The MODFLOW model was integrated with ground data using Geographic Information System (GIS) for sustainable groundwater resource management in the hard rock terrain. The MODFLOW-2005 model simulated the interaction between heads and time in 2014–18 by steady-state conditions. In this present study, four observation wells were selected. During the field survey, four observation wells have been monitored regularly as per the Central Groundwater Board guidelines. MODFLOW software has been conceptualized as a double-layered rigid and fractured aquifer area feast over 18,312 m × 11,265 m area. This research demonstrates that the integration of GIS, conventional fieldwork, and mathematical model can  support to understand groundwater demand and supply in a better way.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laxman Kumar Duvva ◽  
Kiran Kumar Panga ◽  
Ratnakar Dhakate ◽  
Vurimindi Himabindu

AbstractHydrogeochemical controlling variables for the high rate of groundwater contamination in a shallow hard rock aquifer of the semi-arid region of Medchal District, Telangana State, South India, and its associated health risk to children and adults were studied in detail. A total of 56 groundwater samples were analysed for major ion chemistry in pre- and post-monsoon seasons in 2019 year. Spatial distribution, hydrochemical facies, water–rock interaction, health risk assessment, carcinogenic risk, and principal component analyses were carried out to assess the water quality. Spatial distribution of nitrate and fluoride concentrations, high values were observed in the northern, southern, central, and south-western parts of the region. In terms of NO3−, about 88% and 63% and for F− 45% and 32% of the groundwater samples are non-acceptable limits of nitrate 45 mg/l and fluoride 1.5 mg/l during pre- and post-monsoon seasons, respectively. Modified Gibb’s plot showed the majority of the area is dominated by rock dominance and evaporation mechanisms. Statistical analysis reveals that water chemistry is governed by weathering of feldspar minerals and the cation exchange reaction mechanism. The petro-graphical studies revealed the dominance of plagioclase, orthoclase, quartz, biotite, apatite, and hornblende minerals in the host rock. The factor analysis results reveal that the geogenic and anthropogenic activities contribute to groundwater chemistry. Health risk assessment was carried out by calculating the hazard quotient (HQ) on the basis of intake exposure of groundwater, as per the USEPA. Results were obtained for total hazard index value greater than 1 for adults and children, which causes non-cancerous health effects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stanley Ikenna Ifediegwu

AbstractIn the Lafia district, rising population has increased the need for groundwater resources for economic growth. Sustainable groundwater resource management demands accurate quantitative assessment, which may be accomplished using scientific theories and innovative methods. In present study, an integrated method has been employed to assess the groundwater potential zones in the Lafia district utilizing remote sensing (RS), geographic information system (GIS), and analytic hierarchy method (AHP). For this aim, eight thematic maps regulating to occurrence and transportation of groundwater (i.e., geology, rainfall, geomorphology, slope, drainage density, soil, land use/land cover and lineament density) were generated and converted into raster format utilizing ArcGIS tool. Weights were assigned to these eight thematic maps based on their importance. Moreover, the final normalized weights of these parameters were calculated adopting pairwise comparison matrix of the AHP. To create the groundwater potential zones (GWPZs) map of the research area, we employed the overlay weighted sum approach to combine the parameters. The map has been divided into four zones (good, moderate, poor and very poor), each of which represents 19.3, 12.9, 57.8, and 10% of the study area. Lastly, the GWPZs map was validated utilizing borehole data obtained from 50 wells scattered throughout the study area to examine the performance of the approach. The validation results demonstrate that the adopted procedure produces highly reliable results that can aid in long-term development and strategic use of groundwater resources in this area.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Vinoth Kingston ◽  
A. Antony Ravindran ◽  
S. Richard Abishek ◽  
S. K. Aswin ◽  
A. Antony Alosanai Promilton

AbstractSubmarine groundwater discharge (SGD) study is essential for groundwater in coastal terrace at Tiruchendur. The famous Murugan Temple is located in the area and around 25,000 people who visit this temple use the SGD well water at NaaliKinaru (a small open well) as holy water and drink it. The rock and soil type are sandy clay, silt, beach sand, calcarenite, kankar, gneissic rock and charnockite in base rock. Megascopic identification method was used to identify the porous and permeable rocks such as calcarenite, sandstone and kankar to support to increase SGD flux. Grain size study was used to identify the paleo-coastal estuarine environment with sediment deposits in the terrace. The square array electrical resistivity method was used to study the subsurface geology and aquifer depth. The 2d ERT technique was used to identify the subsurface shallow perched aquifer of freshwater. The magnetotelluric survey method was used to scan the entire subsurface geological and tectonic uplift, coastal ridges, rock folded subsurface structural features of continental and oceanic tectonism. Darcy’s law was used to calculate the SGD flux rate in the above study area.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brahim Benzougagh ◽  
Sarita Gajbhiye Meshram ◽  
Abdallah Dridri ◽  
Larbi Boudad ◽  
Brahim Baamar ◽  
...  

AbstractMorphometric analysis is a pertinent scientific approach in any hydrological analysis, and it is necessary in the progress and management of drainage basin. Identification of areas at risk of erosion, and the prioritization of 48 sub-watersheds of Inaouene basin, was done by using linear, relief and areal aspects of watershed. The research carried out the use of geographic information system spatial data. The linear aspects include stream number, stream sequence, stream length, and bifurcation ratio, mean length of stream order, stream length ratio, mean stream length ratio, and form factor. The areal aspect includes frequency of stream, drainage density, texture ratio, channel length constant, and overland flow maintenance length. Ultimately, the relief dimensions included relief proportion, relief and ruggedness number. The array of compound (Cp) values computed allow us to set the priority ranks and classify the sub-watershed into three priority ranks groups: low, moderate, and high priority. Such morphometric analyses can be used therefore as a watershed erosion status estimator to prioritize land and water conservation initiatives and natural resources management.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. P. Dandge ◽  
S. S. Patil

AbstractWater is a vital and widely spread component required for sustaining the life. Groundwater is vastly valuable source and it is extremely beneficial for the human beings. But, the toxic elements release from sources such as industries, landfills as well as non-point causes of pollution such as pesticides and fertilizer from the past year showed high levels of pollution in ground water, hence this is very crucial for evaluating the water quality not only for it’s existing usage, but also a its capacity to develop as a sustainable source of water for human utilization. In rural areas of India, Groundwater is a significant water-drinking source. In Bhokardan area of Jalna District, quality of ground water is great significance, because it is a key alternative source of domestic supply along with drinking water and peoples residing there facing several water quality issues for drinking purpose. In this current research work, an endeavor has been developed to investigate the quality of groundwater as well as spatial distribution by utilizing Remote Sensing along with GIS approaches. Water quality analysis was performed for developing the quality index of water, by utilizing 12 quality parameters of water like Alkalinity, pH, Electrical Conductivity, Fluoride, Chloride, Nitrate, Sulphate, Potassium, Total Hardness, E. coli, Turbidity and Total Dissolved Solids measured at 35 different selected locations in this research work. Spatial distribution map showed that each region of research area falls under category of “Poor water” and “Very poor water” except some sites at Northern regions of the area which falls under “Good water” category during pre-monsoon, whereas most of the sites from Northern and Southern part of the region shifted category from poor to good water along with very poor to poor water during post-monsoon season. The quality index data of water of the current research disclosed that, the high WQI “Water Quality Index” values in the samples of groundwater were principally due to the occurrence of higher values of turbidity and E. Coli. The higher level of water quality parameters like TH, EC, alkalinity, potassium, TDS, chloride and fluoride were also accountable for high values of WQI in this research work. None of the location falls under excellent quality for water during pre-monsoon as well as post-monsoon season.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharmin Sultana ◽  
Boloram Karmaker ◽  
A. S. M. Saifullah ◽  
Md. Galal Uddin ◽  
Md. Moniruzzaman

AbstractWastewater management and its environment-friendly applications seem to be very complicated associated with chemical effects due to their dynamic characteristics for developing countries. Most of the world's agencies or countries have been treated wastewater using chemical coagulants which have contributed to other environmental complications. Considering the impacts of chemical coagulation, this study is novel research to identify alternative components that would be applied as a natural coagulant. The present study was conducted using two different regional clays as coagulants which were collected from Portugal and Bangladesh's Patuakhali coastal area. The clay coagulant applications were applied to investigate the removal efficiency of physical properties (turbidity), chemical properties (pH and COD), and heavy metals (Cr, Cd, Ni, and Pb) from wastewater. Comparatively, the highest removal efficiency was examined by the coastal clay of Patuakhali. This soil is also easily available in the local context and can be economically viable.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasdeep Singh ◽  
Simerpreet Kaur Sehgal ◽  
Kuldip Singh ◽  
Didar Singh

AbstractThe present study focused on the seasonal investigation of hydro-geochemical characteristics of groundwater samples collected from the vicinity of three tributaries of the Beas River, Punjab, India. Total 45 samples were analyzed during the pre- and post-monsoon season for physico-chemical parameters and heavy metals along with health risk assessment. Results revealed that the majority of samples were below the permissible limits set by the BIS and WHO. The relative abundance of major cations was Ca2+ > Mg2+ > Na+ > K+ and Ca2+ > Na+ > Mg2+ > K+, while that of the major anions was HCO3− > SO42− > Cl− > CO32− in the pre- and post-monsoon season, respectively. Groundwater was alkaline and hard in nature at most of the sites. Bicarbonate content exceeded the desirable limit having an average concentration of 337.26 mg/L and 391.48 mg/L, respectively, during the pre- and post-monsoon season. Tukey’s multiple comparison test was applied for finding significant differences among samples at p < 0.05. The dominant hydrochemical face of water was Ca–Mg–HCO3 type. US salinity (USSL) diagram indicated that during the pre-monsoon, 48.9% samples were C2S1 type and remaining 51.1% were C3S1 type while during the post-monsoon all samples were C3S1 type. It indicates that groundwater of the study area is at risk of salinity hazards in future and is not to be ignored. Such monitoring studies are recommended to design future safety plans to combat soil and human health risks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jahanbakhsh Balist ◽  
Bahram Malekmohammadi ◽  
Hamid Reza Jafari ◽  
Ahmad Nohegar ◽  
Davide Geneletti

AbstractThis study investigates how land use and climate changes affect water yield ecosystem service (ES) in the Sirvan River basin, located in Iran’s Kurdistan and Kermanshah provinces. By detecting land-use and climatic parameter changes in the past, their future evolution were modeled by scenario making. For this purpose, we developed two land-use scenarios (low and high urbanization) and two climatic scenarios (Representative Concentration Pathway 2.6 and RCP 8.5). The implemented scenarios showed how the amount of water yield in the basin and sub-basins changes in the future based on climate and land-use changes. The results showed that, concerning land use, the forest has decreased from 2013 to 2019, and built-up areas have increased. Also, the results showed that precipitation has been declining in the long term, and the temperature has been rising. Finally, the Water yield in 2019 was higher than in 2013 and lower in the future based on forecast scenarios. This trend will continue until 2040. In addition, it was found that the t effects of these factors on water yield ES are a complex process, and based on the results, the impact of climatic factors is more significant than the one of land-use change. We could conclude that this region will face more environmental problems in the future.


Sign in / Sign up

Export Citation Format

Share Document