scholarly journals Additive prime number theory in an algebraic number field.

1955 ◽  
Vol 7 (Supplement) ◽  
pp. 409-423 ◽  
Author(s):  
Tikao TATUZAWA
1984 ◽  
Vol 96 ◽  
pp. 139-165 ◽  
Author(s):  
Fumiyuki Momose

Let p be a prime number and k an algebraic number field of finite degree d. Manin [14] showed that there exists an integer n = n(k,p) (≧0) which satisfies the condition


1957 ◽  
Vol 12 ◽  
pp. 177-189 ◽  
Author(s):  
Tomio Kubota

The aim of the present work is to determine the Galois group of the maximal abelian extension ΩA over an algebraic number field Ω of finite degree, which we fix once for all.Let Z be a continuous character of the Galois group of ΩA/Ω. Then, by class field theory, the character Z is also regarded as a character of the idele group of Ω. We call such Z character of Ω. For our purpose, it suffices to determine the group Xl of the characters of Ω whose orders are powers of a prime number l.


1957 ◽  
Vol 12 ◽  
pp. 221-229 ◽  
Author(s):  
Tomio Kubota

Let Ω be an algebraic number field of finite degree, which we fix once for all, and let K be a cyclic extension over Ω such that the degree of K/Ω is a powerof a prime number l. It is obvious that the norm group NK/ΩeK of the unit group ek of K, being a subgroup of the unit group e of Ω contains the groupconsisting of all-th powersof ε∈e.


1996 ◽  
Vol 119 (2) ◽  
pp. 191-200 ◽  
Author(s):  
J. Wójcik

Let K be an algebraic number field. If q is a prime ideal of the ring of integers of K and α is a number of K prime to q then Mq(α) denotes the multiplicative group generated by α modulo q. In the paper [5] there is the remark: ‘We do not know whether for all a, b, c ∈ ℚ with abc ≠ 0, |a| ≠ 1,|b| ≠ 1,|c| ≠ 1 there exist infinitely many primes q with Mq (a) = Mq (b) = Mq (c).’


1971 ◽  
Vol 44 ◽  
pp. 57-59 ◽  
Author(s):  
Yukio Tsushima

Let G be a finite group and let p be a fixed prime number. If D is any p-subgroup of G, then the problem whether there exists a p-block with D as its defect group is reduced to whether NG(D)/D possesses a p-block of defect 0. Some necessary or sufficient conditions for a finite group to possess a p-block of defect 0 have been known (Brauer-Fowler [1], Green [3], Ito [4] [5]). In this paper we shall show that the existences of such blocks depend on the multiplicative structures of the p-elements of G. Namely, let p be a prime divisor of p in an algebraic number field which is a splitting one for G, o the ring of p-integers and k = o/p, the residue class field.


1978 ◽  
Vol 70 ◽  
pp. 183-202 ◽  
Author(s):  
Hiroo Miki

Let k be a finite algebraic number field and let ℓ be a fixed odd prime number. In this paper, we shall prove the equivalence of certain rather strong conditions on the following four things (1) ~ (4), respectively : (1) the class number of the cyclotomic Zℓ-extension of k,(2) the Galois group of the maximal abelian ℓ-extension of k with given ramification,(3) the number of independent cyclic extensions of k of degree ℓ, which can be extended to finite cyclic extensions of k of any ℓ-power degree, and(4) a certain subgroup Bk(m, S) (cf. § 2) of k×/k×)ℓm for any natural number m (see the main theorem in §3).


1988 ◽  
Vol 53 (2) ◽  
pp. 470-480 ◽  
Author(s):  
Masahiro Yasumoto

LetKbe an algebraic number field andIKthe ring of algebraic integers inK. *Kand *IKdenote enlargements ofKandIKrespectively. LetxЄ *K–K. In this paper, we are concerned with algebraic extensions ofK(x)within *K. For eachxЄ *K–Kand each natural numberd, YK(x,d)is defined to be the number of algebraic extensions ofK(x)of degreedwithin *K.xЄ *K–Kis called a Hilbertian element ifYK(x,d)= 0 for alldЄ N,d> 1; in other words,K(x)has no algebraic extension within *K. In their paper [2], P. C. Gilmore and A. Robinson proved that the existence of a Hilbertian element is equivalent to Hilbert's irreducibility theorem. In a previous paper [9], we gave many Hilbertian elements of nonstandard integers explicitly, for example, for any nonstandard natural numberω, 2ωPωand 2ω(ω3+ 1) are Hilbertian elements in*Q, where pωis theωth prime number.


1963 ◽  
Vol 3 (4) ◽  
pp. 408-434 ◽  
Author(s):  
K. Mahler

In his Topics in Number Theory, vol. 2, chapter 2 (Reading, Mass., 1956) W. J. LeVeque proved an important generalisation of Roth's theorem (K. F. Roth, Mathematika 2,1955, 1—20).Let ξ be a fixed algebraic number, σ a positive constant, and K an algebraic number field of degree n. For κ∈K denote by κ(1), …, κ(n) the conjugates of κ relative to K, by h(κ) the smallest positive integer such that the polynomial has rational integral coefficients, and by q(κ) the quantity


Author(s):  
Naoya Takahashi

For an algebraic number field [Formula: see text] and a prime number [Formula: see text], let [Formula: see text] be the maximal multiple [Formula: see text]-extension. Greenberg’s generalized conjecture (GGC) predicts that the Galois group of the maximal unramified abelian pro-[Formula: see text] extension of [Formula: see text] is pseudo-null over the completed group ring [Formula: see text]. We show that GGC holds for some imaginary quartic fields containing imaginary quadratic fields and some prime numbers.


Sign in / Sign up

Export Citation Format

Share Document