scholarly journals Correspondence Between Constructive Real Numbers and L Number in Constructive Mathematics

Author(s):  
Xin Shen ◽  
Yiding Huang ◽  
Shixiang Wang
1973 ◽  
Vol 8 (2) ◽  
pp. 221-232 ◽  
Author(s):  
John Staples

In constructive mathematics the Dedekind cut definition of real number is not equivalent to the definition of real number by Cauchy sequences, and the Dedekind real numbers do not satisfy Heyting's axioms for constructive fields. A more general notion of constructive field is proposed which includes the Dedekind real numbers; some linear algebra is given which applies to such fields.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter is an attempt to recover “points” and (something like) real numbers in the more Aristotelian framework presented in Chapter 3. The techniques go beyond Aristotelian resources, borrowing from contemporary, constructive mathematics. Unlike the case with the semi-Aristotelean account from Chapter 1, here it turns out that the underlying gunky structure and the recovered “points” have very different structures. One is decomposable, the other is not.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3507-3517
Author(s):  
Abhijit Pant ◽  
R.P. Pant ◽  
Kuldeep Prakash

The aim of the present paper is to study the dynamics of a class of orbitally continuous non-linear mappings defined on the set of real numbers and to apply the results on dynamics of functions to obtain tests of divisibility. We show that this class of mappings contains chaotic mappings. We also draw Julia sets of certain iterations related to multiple lowering mappings and employ the variations in the complexity of Julia sets to illustrate the results on the quotient and remainder. The notion of orbital continuity was introduced by Lj. B. Ciric and is an important tool in establishing existence of fixed points.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 5945-5953 ◽  
Author(s):  
İmdat İsçan ◽  
Sercan Turhan ◽  
Selahattin Maden

In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to special means of real numbers are also given.


1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1168
Author(s):  
Cheon Seoung Ryoo ◽  
Jung Yoog Kang

Hermite polynomials are one of the Apell polynomials and various results were found by the researchers. Using Hermit polynomials combined with q-numbers, we derive different types of differential equations and study these equations. From these equations, we investigate some identities and properties of q-Hermite polynomials. We also find the position of the roots of these polynomials under certain conditions and their stacked structures. Furthermore, we locate the roots of various forms of q-Hermite polynomials according to the conditions of q-numbers, and look for values which have approximate roots that are real numbers.


Sign in / Sign up

Export Citation Format

Share Document