On existence result of a class of nonlinear integral equation

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
M. Eshaghi Gordji ◽  
H. Baghani ◽  
O. Baghani

The purpose of this paper is to study the existence of fixed point for a nonlinear integral operator in the framework of Banach space . Later on, we give some examples of applications of this type of results.


Filomat ◽  
2014 ◽  
Vol 28 (6) ◽  
pp. 1253-1264 ◽  
Author(s):  
Hüseyin Işik ◽  
Duran Türkoğlu

The aim of this paper is to extend the results of Bhaskar and Lakshmikantham and some other authors and to prove some new coupled fixed point theorems for mappings having a mixed monotone property in a complete metric space endowed with a partial order. Our theorems can be used to investigate a large class of nonlinear problems. As an application, we discuss the existence and uniqueness for a solution of a nonlinear integral equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mustafa Mudhesh ◽  
Hasanen A. Hammad ◽  
Habes Alsamir ◽  
Muhammad Arshad ◽  
Eskandar Ameer

The goal of this manuscript is to present a new fixed-point theorem on θ − contraction mappings in the setting of rectangular M-metric spaces (RMMSs). Also, a nontrivial example to illustrate our main result has been given. Moreover, some related sequences with θ − contraction mappings have been discussed. Ultimately, our theoretical result has been implicated to study the existence and uniqueness of the solution to a nonlinear integral equation (NIE).


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Gunaseelan Mani ◽  
Arul Joseph Gnanaprakasam ◽  
Absar Ul Haq ◽  
Fahd Jarad ◽  
Imran Abbas Baloch

The purpose of this manuscript is to obtain some fixed point results under mild contractive conditions in fuzzy bipolar metric spaces. Our results generalize and extend many of the previous findings in the same approach. Moreover, two examples to support our theorems are obtained. Finally, to examine and strengthen the theoretical results, the existence and uniqueness of the solution to a nonlinear integral equation was studied as a kind of applications.


2019 ◽  
Vol 488 (6) ◽  
pp. 595-598
Author(s):  
M. V. Nikolaev ◽  
A. A. Nikitin

In this paper we study the nonlinear integral equation that arose in the spatial model of biological communities developed by Austrian scientists Ulf Dieckmann and Richard Law. Sufficient conditions for the existence of the solution of this equation (the fixed point of the integral operator) were found. The question of uniqueness of the solution is also studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hüseyin Işık ◽  
Bahman Moeini ◽  
Hassen Aydi ◽  
Nabil Mlaiki

In this paper, some fixed-point theorems are established for strongly subadditive maps on CΩ,ϒ (where CΩ,ϒ denotes the space of ϒ-valued continuous functions on a compact Hausdorff space Ω and ϒ is a unital Banach algebra). Finally, the result is applied to prove the existence and uniqueness of a solution for a system of nonlinear integrodifferential equations.


1988 ◽  
Vol 37 (1) ◽  
pp. 81-87
Author(s):  
Li Bingyou

In this paper we study fixed points of sums of α-concave and (−α)-convex operators in γ-complete partially ordered linear spaces. As an application we obtain existence and uniqueness theorems for solutions of a certain type of nonlinear integral equation.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 369-388 ◽  
Author(s):  
M. J. GARRIDO-ATIENZA ◽  
A. OGROWSKY ◽  
B. SCHMALFUSS

We investigate a random differential equation with random delay. First the non-autonomous case is considered. We show the existence and uniqueness of a solution that generates a cocycle. In particular, the existence of an attractor is proved. Secondly we look at the random case. We pay special attention to the measurability. This allows us to prove that the solution to the random differential equation generates a random dynamical system. The existence result of the attractor can be carried over to the random case.


2020 ◽  
Vol 21 (1) ◽  
pp. 135
Author(s):  
Godwin Amechi Okeke ◽  
Mujahid Abbas

It is our purpose in this paper to prove some fixed point results and Fej´er monotonicity of some faster fixed point iterative sequences generated by some nonlinear operators satisfying rational inequality in complex valued Banach spaces. We prove that results in complex valued Banach spaces are valid in cone metric spaces with Banach algebras. Furthermore, we apply our results in solving certain mixed type VolterraFredholm functional nonlinear integral equation in complex valued Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document