scholarly journals Study on the Instrument Panel Assembly Modal Analysis Basic on CAE Technology

Author(s):  
Zhi-Kui Ma ◽  
Lin Hua ◽  
Tian-Wen Shi
Author(s):  
Andrew O. Fox ◽  
Raghu Echempati

CAE tools can be used to study the characteristics and reduce the cost of sheet metal parts that are used in products. Using an instrument panel that is used in a car as an example which is made up of sheet metal components the basic process of analyzing the components and assembly to optimize its design is discussed. The paper is mostly educational in the sense that the integrated procedures and analysis presented here can be adapted in a senior level course and at a university that has state-of-the-art CAE tools as discussed in this paper. Several tutorials have been developed that are user-friendly and show how the subsequent analysis can be conducted. To the best of the knowledge of the authors, no such tutorials exist, or are available to students at a university. To start out, solid modeling of the individual sheet metal components using different CAD programs is discussed. Then a discussion on how these solid models can be imported to different CAE programs to be meshed and then subsequently exported to high end solvers like LS-Dyna or MSC Nastran is presented. The integrated analysis that was conducted for this paper was forming analysis of the individual components, followed by modal analysis and gauge optimization of the entire instrument panel assembly. Also, a design of experiments based on Taguchi method is discussed which was done to determine the effects that the input factors have on the results of the forming simulations that were conducted. It is believed that the contents of this paper serve as an educational tool to the students and the instructors involved in understanding and/or teaching sheet metal forming simulation. Sample tutorials will be presented at the conference meeting.


2021 ◽  
Vol 22 (2) ◽  
pp. 328-338
Author(s):  
Kolga V. V. ◽  
◽  
Lykum A. I. ◽  
Marchuk M. E. ◽  
Filipson G. U. ◽  
...  

2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document