scholarly journals Extremes of the 2d scale-inhomogeneous discrete Gaussian free field: Extremal process in the weakly correlated regime

Author(s):  
Maximilian Fels ◽  
Lisa Hartung
2015 ◽  
Vol 20 (0) ◽  
Author(s):  
Alberto Chiarini ◽  
Alessandra Cipriani ◽  
Rajat Hazra

2018 ◽  
Vol 2020 (3) ◽  
pp. 883-913 ◽  
Author(s):  
Vadim Gorin ◽  
Adam W Marcus

Abstract Three operations on eigenvalues of real/complex/quaternion (corresponding to $\beta =1,2,4$) matrices, obtained from cutting out principal corners, adding, and multiplying matrices, can be extrapolated to general values of $\beta>0$ through associated special functions. We show that the $\beta \to \infty $ limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general $\beta $ self-adjoint matrix with fixed eigenvalues is known as the $\beta $-corners process. We show that as $\beta \to \infty $ these eigenvalues crystallize on an irregular lattice consisting of the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field put on top of this lattice, which provides a new explanation as to why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles.


2020 ◽  
Vol 378 (1) ◽  
pp. 625-689 ◽  
Author(s):  
Ewain Gwynne

Abstract Let $$\gamma \in (0,2)$$ γ ∈ ( 0 , 2 ) , let h be the planar Gaussian free field, and consider the $$\gamma $$ γ -Liouville quantum gravity (LQG) metric associated with h. We show that the essential supremum of the Hausdorff dimension of the boundary of a $$\gamma $$ γ -LQG metric ball with respect to the Euclidean (resp. $$\gamma $$ γ -LQG) metric is $$2 - \frac{\gamma }{d_\gamma }\left( \frac{2}{\gamma } + \frac{\gamma }{2} \right) + \frac{\gamma ^2}{2d_\gamma ^2}$$ 2 - γ d γ 2 γ + γ 2 + γ 2 2 d γ 2 (resp. $$d_\gamma -1$$ d γ - 1 ), where $$d_\gamma $$ d γ is the Hausdorff dimension of the whole plane with respect to the $$\gamma $$ γ -LQG metric. For $$\gamma = \sqrt{8/3}$$ γ = 8 / 3 , in which case $$d_{\sqrt{8/3}}=4$$ d 8 / 3 = 4 , we get that the essential supremum of Euclidean (resp. $$\sqrt{8/3}$$ 8 / 3 -LQG) dimension of a $$\sqrt{8/3}$$ 8 / 3 -LQG ball boundary is 5/4 (resp. 3). We also compute the essential suprema of the Euclidean and $$\gamma $$ γ -LQG Hausdorff dimensions of the intersection of a $$\gamma $$ γ -LQG ball boundary with the set of metric $$\alpha $$ α -thick points of the field h for each $$\alpha \in \mathbb R$$ α ∈ R . Our results show that the set of $$\gamma /d_\gamma $$ γ / d γ -thick points on the ball boundary has full Euclidean dimension and the set of $$\gamma $$ γ -thick points on the ball boundary has full $$\gamma $$ γ -LQG dimension.


2010 ◽  
Vol 38 (2) ◽  
pp. 896-926 ◽  
Author(s):  
Xiaoyu Hu ◽  
Jason Miller ◽  
Yuval Peres

Sign in / Sign up

Export Citation Format

Share Document