scholarly journals ARO4 gene – a new dominant selective marker for yeasts Candida famata (Candida flareri) and Hansenula polymorpha (Pichia angusta)

2010 ◽  
Vol 4 (2) ◽  
pp. 5-12 ◽  
Author(s):  
K. V. Dmytruk ◽  
Author(s):  
Hans Hansen ◽  
Cornelis P. Hollenberg

2004 ◽  
Vol 3 (6) ◽  
pp. 1567-1573 ◽  
Author(s):  
Valery I. Shalguev ◽  
Yury V. Kil ◽  
Ludmila V. Yurchenko ◽  
Eugene A. Namsaraev ◽  
Vladislav A. Lanzov

ABSTRACT The Rad51 protein from the methylotrophic yeast Pichia angusta (Rad51Pa) of the taxonomic complex Hansenula polymorpha is a homolog of the RecA-RadA-Rad51 protein superfamily, which promotes homologous recombination and recombination repair in prokaryotes and eukaryotes. We cloned the RAD51 gene from the cDNA library of the thermotolerant P. angusta strain BKM Y1397. Induction of this gene in a rad51-deficient Saccharomyces cerevisiae strain partially complemented the survival rate after ionizing radiation. Purified Rad51Pa protein exhibited properties typical of the superfamily, including the stoichiometry of binding to single-stranded DNA (ssDNA) (one protomer of Rad51Pa per 3 nucleotides) and DNA specificity for ssDNA-dependent ATP hydrolysis [poly(dC) > poly(dT) > φX174 ssDNA > poly(dA) > double-stranded M13 DNA]. An inefficient ATPase and very low cooperativity for ATP interaction position Rad51Pa closer to Rad51 than to RecA. Judging by thermoinactivation, Rad51Pa alone was 20-fold more thermostable at 37°C than its S. cerevisiae homolog (Rad51Sc). Moreover, it maintained ssDNA-dependent ATPase and DNA transferase activities up to 52 to 54°C, whereas Rad51Sc was completely inactive at 47°C. A quick nucleation and an efficient final-product formation in the strand exchange reaction promoted by Rad51Pa occurred only at temperatures above 42°C. These reaction characteristics suggest that Rad51Pa is dependent on high temperatures for activity.


1999 ◽  
Vol 87 (1) ◽  
pp. 82-86 ◽  
Author(s):  
Anna M. van der Heijden ◽  
Pim van Hoek ◽  
Janko Kaliterna ◽  
Johannes P. van Dijken ◽  
Fred van Rantwijk ◽  
...  

1993 ◽  
Vol 59 (3) ◽  
pp. 939-941 ◽  
Author(s):  
Laura Marri ◽  
Gian Maria Rossolini ◽  
Giuseppe Satta

Genetics ◽  
1976 ◽  
Vol 82 (4) ◽  
pp. 605-627
Author(s):  
Etta Käfer

ABSTRACT To analyze mitotic recombination in translocation heterozygotes of A. nidulans two sets of well-marked diploids were constructed, homo- or heterozygous for the reciprocal translocations T1(IL;VIIR) or T2(IL;VIIIR) and heterozygous for selective markers on IL. It was found that from all translocation heterozygotes some of the expected mitotic crossover types could be selected. Such crossovers are monosomic for one translocated segment and trisomic for the other and recovery depends on the relative viabilities of these unbalanced types. The obtained segregants show characteristically reduced growth rates and conidiation dependent on sizes and types of mono- and trisomic segments, and all spontaneously produce normal diploid sectors. Such secondary diploid types either arose in one step of compensating crossing over in the other involved arm, or—more conspicuously—in two steps of nondisjunction via a trisomic intermediate.—In both of the analyzed translocations the segments translocated to IL were extremely long, while those translocated from IL were relatively short. The break in I for T1(I;VII) was located distal to the main selective marker in IL, while that of T2(I;VIII) had been mapped proximal but closely linked to it. Therefore, as expected, the selected primary crossover from the two diploids with T2(I;VIII) in coupling or in repulsion to the selective marker, showed the same chromosomal imbalance and poor growth. These could however be distinguished visually because they spontaneously produced different trisomic intermediates in the next step, in accordance with the different arrangement of the aneuploid segments. On the other hand, from diploids heterozygous for T1(I;VII) mitotic crossovers could only be selected when the selective markers were in coupling with the translocation; these crossovers were relatively well-growing and produced frequent secondary segregants of the expected trisomic, 2n+VII, type. For both translocations it was impossible to recover the reciprocal crossover types (which would be trisomic for the distal segments of I and monosomic for most of groups VII or VIII) presumably because these were too inviable to form conidia.—In addition to the selected segregants of expected types a variety of unexpected ones were isolated. The conditions of selection used favour visual detection of aneuploid types, even if these produce only a few conidial heads and are not at a selective advantage. For T2(I;VIII) these "non-selected" unbalanced segregants were mainly "reciprocal" crossovers of the same phenotype and imbalance as the selected ones. For T1(I;VII) two quite different types were obtained, both possibly originating with loss of the small VII-Itranslocation chromosome. One was isolated when the selective marker in repulsion to T1(I;VII) was used and, without being homo- or hemizygous for the selective marker, it produced stable sectors homozygous for this marker. The other was obtained from both coupling and repulsion diploids and showed a near-diploid genotype; it produced practically only haploid stable sectors of the type expected from monosomics, 2n-1 for the short translocation chromosome.


Sign in / Sign up

Export Citation Format

Share Document