Retention or Attrition Models

1989 ◽  
Vol 14 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Irwin Guttman ◽  
Ingram Olkin

A model for retention and its counterpart, attrition, is presented. In a prototype example, students enter a program in each of k terms; some of the students complete the program, and the remainder leave. A key feature in the models proposed is that there is a dampening effect from term to term because the probability of leaving the program diminishes as the terms progress. The focus of this paper is the study of alternative models for the dampening in attrition rates. A number of alternative dampening effects are proposed that provide for different rates of attrition. Approximate maximum likelihood estimates for the underlying parameters in each model and a Bayesian analysis are provided.

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1779-1788 ◽  
Author(s):  
Carlos D Bustamante ◽  
John Wakeley ◽  
Stanley Sawyer ◽  
Daniel L Hartl

Abstract In this article we explore statistical properties of the maximum-likelihood estimates (MLEs) of the selection and mutation parameters in a Poisson random field population genetics model of directional selection at DNA sites. We derive the asymptotic variances and covariance of the MLEs and explore the power of the likelihood ratio tests (LRT) of neutrality for varying levels of mutation and selection as well as the robustness of the LRT to deviations from the assumption of free recombination among sites. We also discuss the coverage of confidence intervals on the basis of two standard-likelihood methods. We find that the LRT has high power to detect deviations from neutrality and that the maximum-likelihood estimation performs very well when the ancestral states of all mutations in the sample are known. When the ancestral states are not known, the test has high power to detect deviations from neutrality for negative selection but not for positive selection. We also find that the LRT is not robust to deviations from the assumption of independence among sites.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1429-1437
Author(s):  
Oliver G Pybus ◽  
Andrew Rambaut ◽  
Paul H Harvey

Abstract We describe a unified set of methods for the inference of demographic history using genealogies reconstructed from gene sequence data. We introduce the skyline plot, a graphical, nonparametric estimate of demographic history. We discuss both maximum-likelihood parameter estimation and demographic hypothesis testing. Simulations are carried out to investigate the statistical properties of maximum-likelihood estimates of demographic parameters. The simulations reveal that (i) the performance of exponential growth model estimates is determined by a simple function of the true parameter values and (ii) under some conditions, estimates from reconstructed trees perform as well as estimates from perfect trees. We apply our methods to HIV-1 sequence data and find strong evidence that subtypes A and B have different demographic histories. We also provide the first (albeit tentative) genetic evidence for a recent decrease in the growth rate of subtype B.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alain Hecq ◽  
Li Sun

AbstractWe propose a model selection criterion to detect purely causal from purely noncausal models in the framework of quantile autoregressions (QAR). We also present asymptotics for the i.i.d. case with regularly varying distributed innovations in QAR. This new modelling perspective is appealing for investigating the presence of bubbles in economic and financial time series, and is an alternative to approximate maximum likelihood methods. We illustrate our analysis using hyperinflation episodes of Latin American countries.


Sign in / Sign up

Export Citation Format

Share Document