maximum likelihood estimates
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 194)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Lenore Pipes ◽  
Zihao Chen ◽  
Svetlana Afanaseva ◽  
Rasmus Nielsen

Wastewater surveillance has become essential for monitoring the spread of SARS-CoV-2. The quantification of SARS-CoV-2 RNA in wastewater correlates with the Covid-19 caseload in a community. However, estimating the proportions of different SARS-CoV-2 strains has remained technically difficult. We present a method for estimating the relative proportions of SARS-CoV-2 strains from wastewater samples. The method uses an initial step to remove unlikely strains, imputation of missing nucleotides using the global SARS-CoV-2 phylogeny, and an Expectation-Maximization (EM) algorithm for obtaining maximum likelihood estimates of the proportions of different strains in a sample. Using simulations with a reference database of >3 million SARS-CoV-2 genomes, we show that the estimated proportions accurately reflect the true proportions given sufficiently high sequencing depth and that the phylogenetic imputation is highly accurate and substantially improves the reference database.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Aisha Fayomi ◽  
Ali Algarni ◽  
Abdullah M. Almarashi

This paper introduces a new family of distributions by combining the sine produced family and the inverse Lomax generated family. The new proposed family is very interested and flexible more than some old and current families. It has many new models which have many applications in physics, engineering, and medicine. Some fundamental statistical properties of the sine inverse Lomax generated family of distributions as moments, generating function, and quantile function are calculated. Four special models as sine inverse Lomax-exponential, sine inverse Lomax-Rayleigh, sine inverse Lomax-Frèchet and sine inverse Lomax-Lomax models are proposed. Maximum likelihood estimation of model parameters is proposed in this paper. For the purpose of evaluating the performance of maximum likelihood estimates, a simulation study is conducted. Two real life datasets are analyzed by the sine inverse Lomax-Lomax model, and we show that providing flexibility and more fitting than known nine models derived from other generated families.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Najma Salahuddin ◽  
Alamgir Khalil ◽  
Wali Khan Mashwani ◽  
Sharifah Alrajhi ◽  
Sanaa Al-Marzouki ◽  
...  

In this paper, a new generalization of the Generalized Pareto distribution is proposed using the generator suggested in [1], named as Khalil Extended Generalized Pareto (KEGP) distribution. Various shapes of the suggested model and important mathematical properties are investigated that includes moments, quantile function, moment-generating function, measures of entropy, and order statistics. Parametric estimation of the model is discussed using the technique of maximum likelihood. A simulation study is performed for the assessment of the maximum likelihood estimates in terms of their bias and mean squared error using simulated sample estimates. The practical applications are illustrated via two real data sets from survival and reliability theory. The suggested model provided better fits than the other considered models.


2021 ◽  
pp. 096228022110654
Author(s):  
Ashwini Joshi ◽  
Angelika Geroldinger ◽  
Lena Jiricka ◽  
Pralay Senchaudhuri ◽  
Christopher Corcoran ◽  
...  

Poisson regression can be challenging with sparse data, in particular with certain data constellations where maximum likelihood estimates of regression coefficients do not exist. This paper provides a comprehensive evaluation of methods that give finite regression coefficients when maximum likelihood estimates do not exist, including Firth’s general approach to bias reduction, exact conditional Poisson regression, and a Bayesian estimator using weakly informative priors that can be obtained via data augmentation. Furthermore, we include in our evaluation a new proposal for a modification of Firth’s approach, improving its performance for predictions without compromising its attractive bias-correcting properties for regression coefficients. We illustrate the issue of the nonexistence of maximum likelihood estimates with a dataset arising from the recent outbreak of COVID-19 and an example from implant dentistry. All methods are evaluated in a comprehensive simulation study under a variety of realistic scenarios, evaluating their performance for prediction and estimation. To conclude, while exact conditional Poisson regression may be confined to small data sets only, both the modification of Firth’s approach and the Bayesian estimator are universally applicable solutions with attractive properties for prediction and estimation. While the Bayesian method needs specification of prior variances for the regression coefficients, the modified Firth approach does not require any user input.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2444
Author(s):  
Jimmy Reyes ◽  
Mario A. Rojas ◽  
Jaime Arrué

In this work, we present a new generalization of the student’s t distribution. The new distribution is obtained by the quotient of two independent random variables. This quotient consists of a standard Normal distribution divided by the power of a chi square distribution divided by its degrees of freedom. Thus, the new symmetric distribution has heavier tails than the student’s t distribution and extensions of the slash distribution. We develop a procedure to use quantile regression where the response variable or the residuals have high kurtosis. We give the density function expressed by an integral, we obtain some important properties and some useful procedures for making inference, such as moment and maximum likelihood estimators. By way of illustration, we carry out two applications using real data, in the first we provide maximum likelihood estimates for the parameters of the generalized student’s t distribution, student’s t, the extended slash distribution, the modified slash distribution, the slash distribution generalized student’s t test, and the double slash distribution, in the second we perform quantile regression to fit a model where the response variable presents a high kurtosis.


2021 ◽  
Author(s):  
Masahiro Kuroda

Mixture models become increasingly popular due to their modeling flexibility and are applied to the clustering and classification of heterogeneous data. The EM algorithm is largely used for the maximum likelihood estimation of mixture models because the algorithm is stable in convergence and simple in implementation. Despite such advantages, it is pointed out that the EM algorithm is local and has slow convergence as the main drawback. To avoid the local convergence of the EM algorithm, multiple runs from several different initial values are usually used. Then the algorithm may take a large number of iterations and long computation time to find the maximum likelihood estimates. The speedup of computation of the EM algorithm is available for these problems. We give the algorithms to accelerate the convergence of the EM algorithm and apply them to mixture model estimation. Numerical experiments examine the performance of the acceleration algorithms in terms of the number of iterations and computation time.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rashad M. El-Sagheer ◽  
Taghreed M. Jawa ◽  
Neveen Sayed-Ahmed

In this article, we consider estimation of the parameters of a generalized Pareto distribution and some lifetime indices such as those relating to reliability and hazard rate functions when the failure data are progressive first-failure censored. Both classical and Bayesian techniques are obtained. In the Bayesian framework, the point estimations of unknown parameters under both symmetric and asymmetric loss functions are discussed, after having been estimated using the conjugate gamma and discrete priors for the shape and scale parameters, respectively. In addition, both exact and approximate confidence intervals as well as the exact confidence region for the estimators are constructed. A practical example using a simulated data set is analyzed. Finally, the performance of Bayes estimates is compared with that of maximum likelihood estimates through a Monte Carlo simulation study.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuanjia Zuo ◽  
Liang Wang ◽  
Huizhong Lin ◽  
Sanku Dey ◽  
Li Yan

In this paper, the interest is in estimating the Weibull products when the available data is obtained via generalized progressive hybrid censoring. The testing scheme conducts products of interest under a more flexible way and allows collecting failure data in efficient and adaptable experimental scenarios than traditional lifetime testing. When the latent lifetime of products follows Weibull distribution, classical and Bayesian inferences are considered for unknown parameters. The existence and uniqueness of maximum likelihood estimates are established, and approximate confidence intervals are also constructed via asymptotic theory. Bayes point estimates as well as the credible intervals of the parameters are obtained, and correspondingly, Monte Carlo sampling technique is also provided for complex posterior computation. Extensive numerical analysis is carried out, and the results show that the generalized progressive hybrid censoring is an adaptive procedure in practical lifetime experiment, both proposed classical and Bayesian inferential approaches perform satisfactorily, and the Bayesian results are superior to conventional likelihood estimates.


2021 ◽  
Vol 39 (4) ◽  
pp. 505-521
Author(s):  
Valdemiro Piedade VIGAS ◽  
Fábio PRATAVIERA ◽  
Giovana Oliveira SILVA

In this paper, we proposed the Poisson-Weibull distribution for the modeling of survival data. The motivation to study this model since, in addition to generalizing the Weibull distribution, which is widely used in several areas of knowledge among them the Survival and Reliability analysis, it presents great exibility in the forms of the hazard function. The Poisson-Weibull distribution was created in a composition of discrete and continuous distributions where there is no information about which factor was responsible for the component failure, only the minimum lifetime value among all risks is observed. The maximum likelihood approach was used to estimate the parameters of the model. Also was conducted a simulation study to examine the mean, the bias, and the root of the mean square error of the maximum likelihood estimates of the proposed model according to the censoring percentages and sample sizes. The model selection criteria were also applied, in addition to graphic techniques such as TTT-Plot and Kaplan-Meier. Application to the real data set was used to illustrate the usefulnessof the distribution.


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


Sign in / Sign up

Export Citation Format

Share Document