Power System Stabilizer PSS4B Model for Iraqi National Grid using PSS/E Software

2018 ◽  
Vol 24 (5) ◽  
pp. 29 ◽  
Author(s):  
Hanan Mikhael Habbi ◽  
Ahmed Alhamadani

To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed that after installing the PSS in a specific plant the oscillation of rotor angle, bus frequency, speed, power flow is better than without PSS during the disturbances that occurred during the simulations.  All the PSS/E simulation and tests were done in the National dispatch center (NDC) laboratory, Ministry of Electricity.    

2018 ◽  
Vol 24 (3) ◽  
pp. 97 ◽  
Author(s):  
Hanan Mikhael Habbi ◽  
Ahmed Alhamadani

To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS) Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.    


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3416-3423

As power system experiences low frequency oscillations due to disturbances, these low frequency oscillations are related to the small signal stability of a power system. The phenomenon of stability of synchronous machine under small perturbations is explored by examining the case of an SMIB system. The analysis of SMIB gives physical insight into the problem of low frequency oscillations. The SMIB system is predominant in local mode low frequency oscillations. These oscillations may sustain and grow to cause system separation if no adequate damping is available. The damping is provided by adding Power System Stabilizer for Synchronous Machine. In addition, as power system is nonlinear in nature, application of robust control techniques is mandatory to face the challenge of dynamic conditions. Hence, this work aims to design robust Power System Stabilizer for Synchronous Machine in order to damp the rotor speed deviations.


Author(s):  
Sourav Paul ◽  
Provas Kumar Roy

Low frequency oscillation has been a major threat in large interconnected power system. These low frequency oscillations curtain the power transfer capability of the line. Power system stabilizer (PSS) helps in diminishing these low frequency oscillations by providing auxiliary control signal to the generator excitation input, thereby restoring stability of the system. In this chapter, the authors have incorporated the concept of oppositional based learning (OBL) along with differential search algorithm (DSA) to solve PSS problem. The proposed technique has been implemented on both single input and dual input PSS, and comparative study has been done to show the supremacy of the proposed techniques. The convergence characteristics as well authenticate the sovereignty of the considered algorithms.


Sign in / Sign up

Export Citation Format

Share Document