scholarly journals Certain Relations in Statistical Physics Based on Rényi Entropy

2020 ◽  
Vol 75 (6) ◽  
pp. 559-569
Author(s):  
T. N. Bakiev ◽  
D. V. Nakashidze ◽  
A. M. Savchenko
Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 394
Author(s):  
Sergei Koltcov ◽  
Vera Ignatenko ◽  
Zeyd Boukhers ◽  
Steffen Staab

Topic modeling is a popular technique for clustering large collections of text documents. A variety of different types of regularization is implemented in topic modeling. In this paper, we propose a novel approach for analyzing the influence of different regularization types on results of topic modeling. Based on Renyi entropy, this approach is inspired by the concepts from statistical physics, where an inferred topical structure of a collection can be considered an information statistical system residing in a non-equilibrium state. By testing our approach on four models—Probabilistic Latent Semantic Analysis (pLSA), Additive Regularization of Topic Models (BigARTM), Latent Dirichlet Allocation (LDA) with Gibbs sampling, LDA with variational inference (VLDA)—we, first of all, show that the minimum of Renyi entropy coincides with the “true” number of topics, as determined in two labelled collections. Simultaneously, we find that Hierarchical Dirichlet Process (HDP) model as a well-known approach for topic number optimization fails to detect such optimum. Next, we demonstrate that large values of the regularization coefficient in BigARTM significantly shift the minimum of entropy from the topic number optimum, which effect is not observed for hyper-parameters in LDA with Gibbs sampling. We conclude that regularization may introduce unpredictable distortions into topic models that need further research.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jiaju Zhang ◽  
M.A. Rajabpour

Abstract We investigate the Rényi entropy of the excited states produced by the current and its derivatives in the two-dimensional free massless non-compact bosonic theory, which is a two-dimensional conformal field theory. We also study the subsystem Schatten distance between these states. The two-dimensional free massless non-compact bosonic theory is the continuum limit of the finite periodic gapless harmonic chains with the local interactions. We identify the excited states produced by current and its derivatives in the massless bosonic theory as the single-particle excited states in the gapless harmonic chain. We calculate analytically the second Rényi entropy and the second Schatten distance in the massless bosonic theory. We then use the wave functions of the excited states and calculate the second Rényi entropy and the second Schatten distance in the gapless limit of the harmonic chain, which match perfectly with the analytical results in the massless bosonic theory. We verify that in the large momentum limit the single-particle state Rényi entropy takes a universal form. We also show that in the limit of large momenta and large momentum difference the subsystem Schatten distance takes a universal form but it is replaced by a new corrected form when the momentum difference is small. Finally we also comment on the mutual Rényi entropy of two disjoint intervals in the excited states of the two-dimensional free non-compact bosonic theory.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 526
Author(s):  
Gautam Aishwarya ◽  
Mokshay Madiman

The analogues of Arimoto’s definition of conditional Rényi entropy and Rényi mutual information are explored for abstract alphabets. These quantities, although dependent on the reference measure, have some useful properties similar to those known in the discrete setting. In addition to laying out some such basic properties and the relations to Rényi divergences, the relationships between the families of mutual informations defined by Sibson, Augustin-Csiszár, and Lapidoth-Pfister, as well as the corresponding capacities, are explored.


2010 ◽  
Author(s):  
S. Gabarda ◽  
G. Cristóbal ◽  
P. Rodríguez ◽  
C. Miravet ◽  
J. M. del Cura

2011 ◽  
Vol 2011 (12) ◽  
Author(s):  
Ling-Yan Hung ◽  
Robert C. Myers ◽  
Michael Smolkin ◽  
Alexandre Yale
Keyword(s):  

2017 ◽  
Vol 25 ◽  
pp. 189-196 ◽  
Author(s):  
Yi Xin ◽  
Yizhang Zhao ◽  
Yuanhui Mu ◽  
Qin Li ◽  
Caicheng Shi

Sign in / Sign up

Export Citation Format

Share Document