Convolutional Neural Network-Gated Recurrent Unit Neural Network with Feature Fusion for Environmental Sound Classification

2021 ◽  
Vol 55 (4) ◽  
pp. 311-318
Author(s):  
Yu Zhang ◽  
Jinfang Zeng ◽  
Youming Li ◽  
Da Chen
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjie Mu ◽  
Bo Yin ◽  
Xianqing Huang ◽  
Jiali Xu ◽  
Zehua Du

AbstractEnvironmental sound classification is one of the important issues in the audio recognition field. Compared with structured sounds such as speech and music, the time–frequency structure of environmental sounds is more complicated. In order to learn time and frequency features from Log-Mel spectrogram more effectively, a temporal-frequency attention based convolutional neural network model (TFCNN) is proposed in this paper. Firstly, an experiment that is used as motivation in proposed method is designed to verify the effect of a specific frequency band in the spectrogram on model classification. Secondly, two new attention mechanisms, temporal attention mechanism and frequency attention mechanism, are proposed. These mechanisms can focus on key frequency bands and semantic related time frames on the spectrogram to reduce the influence of background noise and irrelevant frequency bands. Then, a feature information complementarity is formed by combining these mechanisms to more accurately capture the critical time–frequency features. In such a way, the representation ability of the network model can be greatly improved. Finally, experiments on two public data sets, UrbanSound 8 K and ESC-50, demonstrate the effectiveness of the proposed method.


Author(s):  
Ke Zhang ◽  
Yu Su ◽  
Jingyu Wang ◽  
Sanyu Wang ◽  
Yanhua Zhang

At present, the environment sound recognition system mainly identifies environment sounds with deep neural networks and a wide variety of auditory features. Therefore, it is necessary to analyze which auditory features are more suitable for deep neural networks based ESCR systems. In this paper, we chose three sound features which based on two widely used filters:the Mel and Gammatone filter banks. Subsequently, the hybrid feature MGCC is presented. Finally, a deep convolutional neural network is proposed to verify which features are more suitable for environment sound classification and recognition tasks. The experimental results show that the signal processing features are better than the spectrogram features in the deep neural network based environmental sound recognition system. Among all the acoustic features, the MGCC feature achieves the best performance than other features. Finally, the MGCC-CNN model proposed in this paper is compared with the state-of-the-art environmental sound classification models on the UrbanSound 8K dataset. The results show that the proposed model has the best classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document