A Computable Structure with Non-Standard Computability

2019 ◽  
Vol 29 (2) ◽  
pp. 77-115
Author(s):  
R. R. Avdeev ◽  
V. G. Puzarenko
Keyword(s):  
2005 ◽  
Vol 136 (3) ◽  
pp. 219-246 ◽  
Author(s):  
Sergey Goncharov ◽  
Valentina Harizanov ◽  
Julia Knight ◽  
Charles McCoy ◽  
Russell Miller ◽  
...  

2009 ◽  
Vol 74 (3) ◽  
pp. 1047-1060 ◽  
Author(s):  
John Chisholm ◽  
Ekaterina B. Fokina ◽  
Sergey S. Goncharov ◽  
Valentina S. Harizanov ◽  
Julia F. Knight ◽  
...  

AbstractWe show that for every computable limit ordinal α, there is a computable structure that is categorical, but not relatively categorical (equivalently, it does not have a formally Scott family). We also show that for every computable limit ordinal α, there is a computable structure with an additional relation R that is intrinsically on , but not relatively intrinsically on (equivalently, it is not definable by a computable Σα formula with finitely many parameters). Earlier results in [7], [10], and [8] establish the same facts for computable successor ordinals α.


2001 ◽  
Vol 66 (2) ◽  
pp. 441-469 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe show that for every c.e. degree a > 0 there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is {0, a}. This result can be extended in two directions. First we show that for every uniformly c.e. collection of sets S there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is the set of degrees of elements of S. Then we show that if α ∈ ω ∪ {ω} then for any α-c.e. degree a > 0 there exists an intrinsically α-c.e. relation on the domain of a computable structure whose degree spectrum {0, a}. All of these results also hold for m-degree spectra of relations.


2006 ◽  
Vol 12 (2) ◽  
pp. 191-218 ◽  
Author(s):  
Wesley Calvert ◽  
Julia F. Knight

Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we describe some recent work on classification in computable structure theory.Section 1 gives some background from model theory and descriptive set theory. From model theory, we give sample structure and non-structure theorems for classes that include structures of arbitrary cardinality. We also describe the notion of Scott rank, which is useful in the more restricted setting of countable structures. From descriptive set theory, we describe the basic Polish space of structures for a fixed countable language with fixed countable universe. We give sample structure and non-structure theorems based on the complexity of the isomorphism relation, and on Borel embeddings.Section 2 gives some background on computable structures. We describe three approaches to classification for these structures. The approaches are all equivalent. However, one approach, which involves calculating the complexity of the isomorphism relation, has turned out to be more productive than the others. Section 3 describes results on the isomorphism relation for a number of mathematically interesting classes—various kinds of groups and fields. In Section 4, we consider a setting similar to that in descriptive set theory. We describe an effective analogue of Borel embedding which allows us to make distinctions even among classes of finite structures. Section 5 gives results on computable structures of high Scott rank. Some of these results make use of computable embeddings. Finally, in Section 6, we mention some open problems and possible directions for future work.


2002 ◽  
Vol 67 (2) ◽  
pp. 697-720 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe give some new examples of possible degree spectra of invariant relations on Δ20-categorical computable structures, which demonstrate that such spectra can be fairly complicated. On the other hand, we show that there are nontrivial restrictions on the sets of degrees that can be realized as degree spectra of such relations. In particular, we give a sufficient condition for a relation to have infinite degree spectrum that implies that every invariant computable relation on a Δ20-categorical computable structure is either intrinsically computable or has infinite degree spectrum. This condition also allows us to use the proof of a result of Moses [23] to establish the same result for computable relations on computable linear orderings.We also place our results in the context of the study of what types of degree-theoretic constructions can be carried out within the degree spectrum of a relation on a computable structure, given some restrictions on the relation or the structure. From this point of view we consider the cases of Δ20-categorical structures, linear orderings, and 1-decidable structures, in the last case using the proof of a result of Ash and Nerode [3] to extend results of Harizanov [14].


2011 ◽  
Vol 76 (1) ◽  
pp. 66-93 ◽  
Author(s):  
Barbara F. Csima ◽  
Valentina S. Harizanov ◽  
Russell Miller ◽  
Antonio Montalbán

AbstractFraïssé studied countable structures through analysis of the age of , i.e., the set of all finitely generated substructures of . We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by a quantifier-free formula. We give some sufficient or necessary conditions for a Fraïssé limit to be spectrally universal. As an application, we prove that the computable atomless Boolean algebra is spectrally universal.


2010 ◽  
Vol 10 (01n02) ◽  
pp. 31-43 ◽  
Author(s):  
J. F. KNIGHT ◽  
J. MILLAR

For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and codes it into a computable structure. The second re-works Makkai's construction, incorporating an idea of Sacks.


2019 ◽  
Vol 244 (3) ◽  
pp. 255-285 ◽  
Author(s):  
Joe Clanin ◽  
Timothy H. McNicholl ◽  
Don M. Stull

Sign in / Sign up

Export Citation Format

Share Document