countable structure
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Maciej Malicki

AbstractWe study the notion of weak amalgamation in the context of diagonal conjugacy classes. Generalizing results of Kechris and Rosendal, we prove that for every countable structure M, Polish group G of permutations of M, and $$n \ge 1$$ n ≥ 1 , G has a comeager n-diagonal conjugacy class iff the family of all n-tuples of G-extendable bijections between finitely generated substructures of M, has the joint embedding property and the weak amalgamation property. We characterize limits of weak Fraïssé classes that are not homogenizable. Finally, we investigate 1- and 2-diagonal conjugacy classes in groups of ball-preserving bijections of certain ordered ultrametric spaces.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


2017 ◽  
Vol 82 (1) ◽  
pp. 1-25 ◽  
Author(s):  
DAVID MARKER ◽  
RUSSELL MILLER

AbstractThe degree spectrum of a countable structure is the set of all Turing degrees of presentations of that structure. We show that every nonlow Turing degree lies in the spectrum of some differentially closed field (of characteristic 0, with a single derivation) whose spectrum does not contain the computable degree 0. Indeed, this is an equivalence, for we also show that if this spectrum contained a low degree, then it would contain the degree 0. From these results we conclude that the spectra of differentially closed fields of characteristic 0 are exactly the jump-preimages of spectra of automorphically nontrivial graphs.


2016 ◽  
Vol 62 (6) ◽  
pp. 530-546 ◽  
Author(s):  
Itay Kaplan ◽  
Saharon Shelah

2016 ◽  
Vol 81 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
URI ANDREWS ◽  
MINGZHONG CAI ◽  
ISKANDER SH. KALIMULLIN ◽  
STEFFEN LEMPP ◽  
JOSEPH S. MILLER ◽  
...  

AbstractWe study Turing degrees a for which there is a countable structure ${\cal A}$ whose degree spectrum is the collection {x : x ≰ a}. In particular, for degrees a from the interval [0′, 0″], such a structure exists if a′ = 0″, and there are no such structures if a″ > 0‴.


2016 ◽  
Vol 81 (3) ◽  
pp. 814-832 ◽  
Author(s):  
JULIA KNIGHT ◽  
ANTONIO MONTALBÁN ◽  
NOAH SCHWEBER

AbstractIn this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic presentability, the existence of a copy of the structure in every extension by a given forcing. We show that every forcing notion making ω2 countable generically presents some countable structure with no copy in the ground model; and that every structure generically presentable by a forcing notion that does not make ω2 countable has a copy in the ground model. We also show that any countable structure ${\cal A}$ that is generically presentable by a forcing notion not collapsing ω1 has a countable copy in V, as does any structure ${\cal B}$ generically Muchnik reducible to a structure ${\cal A}$ of cardinality ℵ1. The former positive result yields a new proof of Harrington’s result that counterexamples to Vaught’s conjecture have models of power ℵ1 with Scott rank arbitrarily high below ω2. Finally, we show that a rigid structure with copies in all generic extensions by a given forcing has a copy already in the ground model.


2011 ◽  
Vol 90 (104) ◽  
pp. 1-11
Author(s):  
Zarko Mijajlovic ◽  
Dragan Doder ◽  
Angelina Ilic-Stepic

We show that certain families of sets and functions related to a countable structure A are analytic subsets of a Polish space. Examples include sets of automorphisms, endomorphisms and congruences of A and sets of the combinatorial nature such as coloring of countable plain graphs and domino tiling of the plane. This implies, without any additional set-theoretical assumptions, i.e., in ZFC alone, that cardinality of every such uncountable set is 2?0.


2010 ◽  
Vol 10 (01n02) ◽  
pp. 31-43 ◽  
Author(s):  
J. F. KNIGHT ◽  
J. MILLAR

For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and codes it into a computable structure. The second re-works Makkai's construction, incorporating an idea of Sacks.


2009 ◽  
Vol 74 (1) ◽  
pp. 187-200
Author(s):  
Benjamin Claverie ◽  
Ralf Schindler

AbstractWe show that if I is a precipitous ideal on ω1 and if θ > ω1 is a regular cardinal, then there is a forcing ℙ = ℙ(I, θ) which preserves the stationarity of all I-positive sets such that in Vℙ, ⟨Hθ; ∈, I⟩ is a generic iterate of a countable structure ⟨M; ∈, Ī⟩. This shows that if the nonstationary ideal on ω1 is precipitous and exists, then there is a stationary set preserving forcing which increases . Moreover, if Bounded Martin's Maximum holds and the nonstationary ideal on ω1 is precipitous, then .


2009 ◽  
Vol 78 (4) ◽  
pp. 1189-1198
Author(s):  
Uri Andrews ◽  
Julia F. Knight

AbstractFor a countable structure , the spectrum is the set of Turing degrees of isomorphic copies of . For a complete elementary first order theory T, the spectrum is the set of Turing degrees of models of T. We answer a question from [1] by showing that there is an atomic theory T whose spectrum does not match the spectrum of any structure.


Sign in / Sign up

Export Citation Format

Share Document