Lysophosphatidic acid induces protein tyrosine phosphorylation in the absence of phospholipase C activation in human platelets

Platelets ◽  
1997 ◽  
Vol 8 (2) ◽  
pp. 181-187
Author(s):  
M. Torti ◽  
E. Tolnai Festetics ◽  
A. Bertoni ◽  
R. Moratti ◽  
C. Balduini ◽  
...  
Platelets ◽  
1997 ◽  
Vol 8 (2) ◽  
pp. 181-188
Author(s):  
M. Torti ◽  
E. Tolnai Festetics ◽  
A. Bertoni ◽  
R. Moratti ◽  
C. Balduini ◽  
...  

Platelets ◽  
1997 ◽  
Vol 8 (2-3) ◽  
pp. 181-187 ◽  
Author(s):  
M. Torti ◽  
E. Tolnai Festetics ◽  
A. Bertoni ◽  
R. Moratti ◽  
C. Balduini ◽  
...  

1993 ◽  
Vol 289 (2) ◽  
pp. 387-394 ◽  
Author(s):  
M Biffen ◽  
M Shiroo ◽  
D R Alexander

The possible involvement of G-proteins in T cell antigen-receptor complex (TCR)-mediated inositol phosphate production was investigated in HPB-ALL T-cells, which were found to express the phospholipase C gamma 1 and beta 3 isoforms. Cross-linking the CD3 antigen on streptolysin-O-permeabilized cells stimulated a dose-dependent increase in inositol phosphate production, as did addition of guanosine 5′-[gamma-thio]triphosphate (GTP[S]) or vanadate, a phosphotyrosine phosphatase inhibitor. It was possible, therefore, that the CD3-antigen-mediated production of inositol phosphates was either via a G-protein-dependent mechanism or by stimulation of protein tyrosine phosphorylation. The CD3-induced inositol phosphate production was potentiated by addition of vanadate, but not by addition of GTP[S]. Guanosine 5′-[beta-thio]diphosphate (GDP[S]) inhibited the rise in inositol phosphates induced by GTP[S], vanadate or cross-linking the CD3 antigen. The increase in protein tyrosine phosphorylation stimulated by vanadate or the OKT3 monoclonal antibody was not observed in the presence of GDP[S], showing that in permeabilized HPB-ALL cells, GDP[S] inhibits the actions of tyrosine kinases as well as G-protein function. Addition of either ADP[S] or phenylarsine oxide inhibited CD3- and vanadate-mediated increases in both tyrosine phosphorylation and inositol phosphate production, but did not inhibit GTP[S]-stimulated inositol phosphate production. On the other hand, pretreatment of cells with phorbol 12,13-dibutyrate inhibited subsequent GTP[S]-stimulated inositol phosphate production but did not inhibit significantly inositol phosphate production stimulated by either OKT3 F(ab')2 fragments or vanadate. Our results are consistent with the CD3 antigen stimulating inositol phosphate production by increasing the level of protein tyrosine phosphorylation, but not by activating a G-protein.


1996 ◽  
Vol 75 (04) ◽  
pp. 648-654 ◽  
Author(s):  
Naoki Asazuma ◽  
Yutaka Yatomi ◽  
Yukio Ozaki ◽  
Ruomei Qi ◽  
Kenji Kuroda ◽  
...  

SummaryIn human platelets treated with acetylsalicylic acid, collagen induced protein-tyrosine-phosphorylation of several proteins. The major 75 kDa band included cortactin and autophosphorylated p72 syk . p72 syk activity rapidly increased upon collagen stimulation, whereas p60c-src activation was below detectable levels. A combination of inhibitors to remove the effects of extracellular and intracellular Ca2+, released ADP, and fibrinogen binding to GPIIb/IIIa delayed and attenuated the major 75 kDa band. By contrast, p72 syk activation was not inhibited by these treatments. Cytochalasin D completely inhibited protein tyrosine phosphorylation and p72 syk activation. It also potently inhibited aggregation and [Ca2+]i elevation. Anti-GPMIa/IIa MoAb in a concentration-dependent manner partially attenuated protein tyrosine phosphorylation and p72 syk activation. Its inhibitory effects on intracellular Ca2+ mobilization, release of intracellular granule contents, and aggregation also were partial. No tyrosine kinase activity was coprecipitated with GPIa/IIa. These results suggest that p72 syk activation lies upstream of protein tyrosine phosphorylation, Ca2+ mobilization, ADP release, thromboxane A2 production and aggregation. GPIa/IIa plays a key role in p72 syk activation induced by collagen, but other collagen receptors may work in synergy to fully activate p72 syk . Actin polymerization is a prerequisite for both p72 syk activation and other intracellular signal transduction pathways.


Sign in / Sign up

Export Citation Format

Share Document