lysophosphatidic acid
Recently Published Documents


TOTAL DOCUMENTS

2441
(FIVE YEARS 342)

H-INDEX

114
(FIVE YEARS 10)

2022 ◽  
Vol 8 ◽  
Author(s):  
Xiaogao Pan ◽  
Yang Zhou ◽  
Guifang Yang ◽  
Zhibiao He ◽  
Hongliang Zhang ◽  
...  

Background: Misdiagnosis and delayed diagnosis of acute aortic dissection (AAD) significantly increase mortality. Lysophosphatidic acid (LPA) is a biomarker related to coagulation cascade and cardiovascular-injury. The extent of LPA elevation in AAD and whether it can discriminate sudden-onset of acute chest pain are currently unclear.Methods: We measured the plasma concentration of LPA in a cohort of 174 patients with suspected AAD chest pain and 30 healthy participants. Measures to discriminate AAD from other acute-onset thoracalgia were compared and calculated.Results: LPA was significantly higher in AAD than in the AMI, PE, and the healthy (344.69 ± 59.99 vs. 286.79 ± 43.01 vs. 286.61 ± 43.32 vs. 96.08 ± 11.93, P < 0.01) within 48 h of symptom onset. LPA level peaked at 12 h after symptom onset, then gradually decreased from 12 to 48 h in AAD. LPA had an AUC of 0.85 (0.80–0.90), diagnosis threshold of 298.98 mg/dl, a sensitivity of 0.81, specificity of 0.77, and the negative predictive value of 0.85. The ROC curve of LPA is better than D-dimer (P = 0.041, Delong test). The decision curve showed that LPA had excellent standardized net benefits.Conclusion: LPA showed superior overall diagnostic performance to D-dimer in early AAD diagnosis may be a potential biomarker, but additional studies are needed to determine the rapid and cost-effective diagnostic tests in the emergency department.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 228
Author(s):  
Angeliki Karagiota ◽  
Georgia Chachami ◽  
Efrosyni Paraskeva

Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.


2021 ◽  
Vol 23 (1) ◽  
pp. 99
Author(s):  
Xishuai Wang ◽  
Shiyu Zhao ◽  
Junhui Lai ◽  
Weijun Guan ◽  
Yang Gao

Background: Mesenchymal stem cell (MSC) intervention has been associated with lung protection. We attempted to determine whether mouse gingival-derived mesenchymal stem cells (GMSCs) could protect against bleomycin-induced pulmonary fibrosis. Methods: Mice were divided into three groups: control (Con), bleomycin (Bl), and bleomycin + MSCs (Bl + MSCs). Mice were treated with 5 mg/kg bleomycin via transtracheal instillation to induce pulmonary fibrosis. We assessed the following parameters: histopathological severity of injury in the lung, liver, kidney, and aortic tissues; the degree of pulmonary fibrosis; pulmonary inflammation; pulmonary oedema; profibrotic factor levels in bronchoalveolar lavage fluid (BALF) and lung tissue; oxidative stress-related indicators and apoptotic index in lung tissue; and gene expression levels of IL-1β, IL-8, TNF-α, lysophosphatidic acid (LPA), lysophosphatidic acid receptor 1 (LPA1), TGF-β, matrix metalloproteinase 9 (MMP-9), neutrophil elastase (NE), MPO, and IL-10 in lung tissue. Results: GMSC intervention attenuated bleomycin-induced pulmonary fibrosis, pulmonary inflammation, pulmonary oedema, and apoptosis. Bleomycin instillation notably increased expression levels of the IL-1β, IL-8, TNF-α, LPA, LPA1, TGF-β, MMP-9, NE, and MPO genes and attenuated expression levels of the IL-10 gene in lung tissue, and these effects were reversed by GMSC intervention. Bleomycin instillation notably upregulated MDA and MPO levels and downregulated GSH and SOD levels in lung tissue, and these effects were reversed by GMSC intervention. GMSC intervention prevented upregulation of neutrophil content in the lung, liver, and kidney tissues and the apoptotic index in lung tissue. Conclusions: GMSC intervention exhibits anti-inflammatory and antioxidant capacities. Deleterious accumulation of neutrophils, which is reduced by GMSC intervention, is a key component of bleomycin-induced pulmonary fibrosis. GMSC intervention impairs bleomycin-induced NE, MMP-9, LPA, APL1, and TGF-β release.


2021 ◽  
Vol 22 ◽  
Author(s):  
Supriya Vishwakarma ◽  
Neha Arya ◽  
Ashok Kumar

: The tumor microenvironment (TME) consists of cancer cells that interact with stromal components such as the extracellular matrix, blood, and lymphatic networks, fibroblasts, adipocytes, and the cells of the immune system. Further, the tumor immune microenvironment, majorly represented by the tumor-infiltrating immune cells (TIIC), plays an important role in cancer therapeutics and patient prognosis. In fact, a high density of TIICs within the tumor microenvironment is known to be associated with better outcomes in several types of cancers. Towards this, two bioactive lipid molecules, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) regulate the homing of immune cells to the TME. In the present review, we will uncover the role of LPA and S1P signaling in the tumor immune environment, highlighting the latest progress in this field.


2021 ◽  
Vol 14 ◽  
Author(s):  
Victoria García-Morales ◽  
Ángela Gento-Caro ◽  
Federico Portillo ◽  
Fernando Montero ◽  
David González-Forero ◽  
...  

Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1–/–) and TASK3 (task3–/–, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3–/–, but not in task1–/– HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.


2021 ◽  
Vol 8 (1) ◽  
pp. e001026
Author(s):  
Tamera J Corte ◽  
Lisa Lancaster ◽  
Jeffrey J Swigris ◽  
Toby M Maher ◽  
Jonathan G Goldin ◽  
...  

IntroductionIdiopathic pulmonary fibrosis (IPF) and non-IPF, progressive fibrotic interstitial lung diseases (PF-ILD), are associated with a progressive loss of lung function and a poor prognosis. Treatment with antifibrotic agents can slow, but not halt, disease progression, and treatment discontinuation because of adverse events is common. Fibrotic diseases such as these can be mediated by lysophosphatidic acid (LPA), which signals via six LPA receptors (LPA1–6). Signalling via LPA1 appears to be fundamental in the pathogenesis of fibrotic diseases. BMS-986278, a second-generation LPA1 antagonist, is currently in phase 2 development as a therapy for IPF and PF-ILD.Methods and analysisThis phase 2, randomised, double-blind, placebo-controlled, parallel-group, international trial will include adults with IPF or PF-ILD. The trial will consist of a 42-day screening period, a 26-week placebo-controlled treatment period, an optional 26-week active-treatment extension period, and a 28-day post-treatment follow-up. Patients in both the IPF (n=240) and PF-ILD (n=120) cohorts will be randomised 1:1:1 to receive 30 mg or 60 mg BMS-986278, or placebo, administered orally two times per day for 26 weeks in the placebo-controlled treatment period. The primary endpoint is rate of change in per cent predicted forced vital capacity from baseline to week 26 in the IPF cohort.Ethics and disseminationThis study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles, and local ethical and legal requirements. Results will be reported in a peer-reviewed publication.Trial registration numberNCT04308681.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 808
Author(s):  
Cheng-Yen Kao ◽  
Pei-Yun Kuo ◽  
Hsiao-Wei Liao

Untargeted metabolomic profiling provides the opportunity to comprehensively explore metabolites of interest. Herein, we investigated the metabolic pathways associated with Jhp0106, a glycosyltransferase enzyme in Helicobacter pylori. Through untargeted exometabolomic and metabolomic profiling, we identified 9 and 10 features with significant differences in the culture media and pellets of the wild-type (WT) J99 and jhp0106 mutant (Δjhp0106). After tentative identification, several phosphatidylethanolamines (PEs) were identified in the culture medium, the levels of which were significantly higher in WT J99 than in Δjhp0106. Moreover, the reduced lysophosphatidic acid absorption from the culture medium and the reduced intrinsic diacylglycerol levels observed in Δjhp0106 indicate the possibility of reduced PE synthesis in Δjhp0106. The results suggest an association of the PE synthesis pathway with flagellar formation in H. pylori. Further investigations should be conducted to confirm this finding and the roles of the PE synthesis pathway in flagellar formation. This study successfully demonstrates the feasibility of the proposed extraction procedure and untargeted exometabolomic and metabolomic profiling strategies for microbial metabolomics. They may also extend our understanding of metabolic pathways associated with flagellar formation in H. pylori.


Sign in / Sign up

Export Citation Format

Share Document