scholarly journals Computer-Assisted Fracture Reduction: Novel Method for Analysis of Accuracy

2001 ◽  
Vol 6 (3) ◽  
pp. 153-159 ◽  
Author(s):  
T. Hüfner ◽  
T. Pohlemann ◽  
S. Tarte ◽  
A. Gänsslen ◽  
M. Citak ◽  
...  
2002 ◽  
Vol 399 ◽  
pp. 231-239 ◽  
Author(s):  
T. H??fner ◽  
T. Pohlemann ◽  
S. Tarte ◽  
A. G??nsslen ◽  
J. Geerling ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Christoph Zindel ◽  
Philipp Fürnstahl ◽  
Armando Hoch ◽  
Tobias Götschi ◽  
Andreas Schweizer ◽  
...  

Abstract Background Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. So far, the described fracture reduction approaches rely strongly on the performance of the users. The goal of our study was to analyze the influence of the two different professional backgrounds (technical and medical) and skill levels regarding the reliability of the proposed planning method. Finally, a new fragment displacement measurement method was introduced due to the lack of consistent methods in the literature. Methods 3D bone models of 20 distal radius fractures were presented to nine raters with different educational backgrounds (medical and technical) and various levels of experience in 3D operation planning (0 to 10 years) and clinical experience (1.5 to 24 years). Each rater was asked to perform the fracture reduction on 3D planning software. Results No difference was demonstrated in reduction accuracy regarding rotational (p = 1.000) and translational (p = 0.263) misalignment of the fragments between biomedical engineers and senior orthopedic residents. However, a significantly more accurate planning was performed in these two groups compared with junior orthopedic residents with less clinical experience and no 3D planning experience (p < 0.05). Conclusion Experience in 3D operation planning and clinical experience are relevant factors to plan an intra-articular fragment reduction of the distal radius. However, no difference was observed regarding the educational background (medical vs. technical) between biomedical engineers and senior orthopedic residents. Therefore, our results support the further development of computer-assisted surgery planning by biomedical engineers. Additionally, the introduced fragment displacement measure proves to be a feasible and reliable method. Level of Evidence Diagnostic Level II


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Pavel Kotlarsky ◽  
Oren Feldman ◽  
Itai Shavit ◽  
Mark Eidelman

2013 ◽  
Vol 11 (01) ◽  
pp. 1340012 ◽  
Author(s):  
SEYED SHAHRIAR ARAB ◽  
MOHAMMADBAGHER PARSA GHARAMALEKI ◽  
ZAIDDODINE PASHANDI ◽  
REZVAN MOBASSERI

Computer assisted assignment of protein domains is considered as an important issue in structural bioinformatics. The exponential increase in the number of known three dimensional protein structures and the significant role of proteins in biology, medicine and pharmacology illustrate the necessity of a reliable method to automatically detect structural domains as protein units. For this aim, we have developed a program based on the accessible surface area (ASA) and the hydrogen bonds energy in protein backbone (HBE). PUTracer (Protein Unit Tracer) is built on the features of a fast top-down approach to cut a chain into its domains (contiguous domains) with minimal change in ASA as well as HBE. Performance of the program was assessed by a comprehensive benchmark dataset of 124 protein chains, which is based on agreement among experts (e.g. CATH, SCOP) and was expanded to include structures with different types of domain combinations. Equal number of domains and at least 90% agreement in critical boundary accuracy were considered as correct assignment conditions. PUTracer assigned domains correctly in 81.45% of protein chains. Although low critical boundary accuracy in 18.55% of protein chains leads to the incorrect assignments, adjusting the scales causes to improve the performance up to 89.5%. We discuss here the success or failure of adjusting the scales with provided evidences. Availability: PUTracer is available at http://bioinf.modares.ac.ir/software/PUTracer/


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Shijie Zhu ◽  
Zhe Zhao ◽  
Yu Chen ◽  
Jiuzheng Deng ◽  
Bicong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document