Interference of low frequency magnetic fields with implantable cardioverter-defibrillators

2012 ◽  
Vol 46 (5) ◽  
pp. 308-314 ◽  
Author(s):  
Maria Tiikkaja ◽  
Tommi Alanko ◽  
Harri Lindholm ◽  
Maila Hietanen ◽  
Lauri Toivonen ◽  
...  
2021 ◽  
Vol 55 (3) ◽  
pp. 91-95
Author(s):  
Seth J. Seidman ◽  
Howard I. Bassen

Abstract Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday's law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.


2014 ◽  
Vol 40 ◽  
pp. 205-213
Author(s):  
Leena Korpinen ◽  
Harri Kuisti ◽  
Hiroo Tarao ◽  
Jarmo Elovaara ◽  
Vesa Virtanen

Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Sign in / Sign up

Export Citation Format

Share Document