ring electrode
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 2)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hua-Ju Shih ◽  
Kuo-Ching Chen

Energy harvesters are devices that accumulate ambient vibrational energy from the environment, and for the time being, variable capacitance is the most widely used mechanism. Various designs were proposed to increase the power of such devices, and in particular, the interdigitated electrode (IDE) pattern is the mainstream. Nevertheless, most IDE designs focus merely on the parallel-type vibrations of electrodes. In this study, the performance of a novel harvester, which combined circular membrane and interdigitated ring electrodes (IRE), was investigated. This design allows the device to collect energy from the rotational structure motions of electrodes through the vibrating membrane. Besides, the circular structure provides a dense capacitive arrangement that is higher than that of the arrangement obtained using regular rectangular chips. The IRE diagram is composed of many capacitive rings, each of which harvests vibrated energy simultaneously. Three gaps (1, 10, and 100 μm) of the ring are investigated for the first four vibrational modes of the membrane to understand the effect of energy output. It is found that the energy outputs are approximately the same for the three gaps; however, rings with a wider gap are easier to manufacture in MEMS.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 238
Author(s):  
Josef Khun ◽  
Anna Machková ◽  
Petra Kašparová ◽  
Myron Klenivskyi ◽  
Eva Vaňková ◽  
...  

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.


2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Oleksandr Makeyev ◽  
Alana Lee ◽  
Ashton Begay

Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological measurement capable of estimating the surface Laplacian (second spatial derivative of surface potential) at each electrode. Previously, progress was made toward optimization of inter-ring distances (distances between the recording surfaces of a concentric ring electrode), maximizing the accuracy of the surface Laplacian estimate based on the negligible dimensions model of the electrode. However, this progress was limited to tripolar (number of concentric rings n equal to 2) and quadripolar (n = 3) electrode configurations only. In this study, the inter-ring distances optimization problem is solved for pentapolar (n = 4) and sextopolar (n = 5) concentric ring electrode configurations using a wide range of truncation error percentiles ranging from 1st to 25th. Obtained results also suggest consistency between all the considered concentric ring electrode configurations corresponding to n ranging from 2 to 5 that may allow estimation of optimal ranges of inter-ring distances for electrode configurations with n ≥ 6. Therefore, this study may inform future concentric ring electrode design for n ≥ 4 which is important since the accuracy of surface Laplacian estimation has been shown to increase with an increase in n.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5881
Author(s):  
Oleksandr Makeyev ◽  
Yiyao Ye-Lin ◽  
Gema Prats-Boluda ◽  
Javier Garcia-Casado

The optimization performed in this study is based on the finite dimensions model of the concentric ring electrode as opposed to the negligible dimensions model used in the past. This makes the optimization problem comprehensive, as all of the electrode parameters including, for the first time, the radius of the central disc and individual widths of concentric rings, are optimized simultaneously. The optimization criterion used is maximizing the accuracy of the surface Laplacian estimation, as the ability to estimate the Laplacian at each electrode constitutes primary biomedical significance of concentric ring electrodes. For tripolar concentric ring electrodes, the optimal configuration was compared to previously proposed linearly increasing inter-ring distances and constant inter-ring distances configurations of the same size and based on the same finite dimensions model. The obtained analytic results suggest that previously proposed configurations correspond to almost two-fold and more than three-fold increases in the Laplacian estimation error compared with the optimal configuration proposed in this study, respectively. These analytic results are confirmed using finite element method modeling, which was adapted to the finite dimensions model of the concentric ring electrode for the first time. Moreover, the finite element method modeling results suggest that optimal electrode configuration may also offer improved sensitivity and spatial resolution.


2021 ◽  
Vol 55 (3) ◽  
pp. 91-95
Author(s):  
Seth J. Seidman ◽  
Howard I. Bassen

Abstract Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday's law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.


2021 ◽  
Author(s):  
Desheng Zhou ◽  
Qiang Liu ◽  
Jingfeng Tang ◽  
Haoran Zhang

2021 ◽  
Vol 4 (1) ◽  
pp. 32
Author(s):  
Siddharth Swaminathan ◽  
Arezoo Emadi

Quartz Crystal Microbalance (QCM) is used for detecting microgram level mass changes in gas and liquid phase. Conventional QCM design comprises a circular electrode configuration with an evenly distributed mass loading area. However, their mass sensitivity distribution is found to be non-uniform due to the inherent energy trapping effect. In this paper, the recently developed QCM with a ring electrode and a ring-dot electrode configuration are evaluated. It is shown that this new configuration offers the ability to achieve a uniform mass sensitivity distribution, while attaining a comparable mass sensitivity for a reduced mass loading area. Finite Element Analysis is used to design and evaluate the conventional circular electrode QCM, and the proposed ring electrode and ring-dot electrode QCM configurations, where the mass loading area is reduced by 25% compared with the conventional sensor. Simulations are conducted to determine the sensor’s resonant frequency shifts for an added mass per unit area of 20 μg/mm2. The results indicate that newly designed ring and ring-dot electrode configurations operate at a higher resonant frequency. The observed frequency shift for the designed circular electrode, ring electrode, and ring-dot electrode configurations on a 333 μm thick quartz substrate are 85 kHz, 84 kHz, and 82 kHz, respectively. It is shown that the ring electrode and new ring-dot electrode configurations achieve a higher resonant frequency and offer a comparable sensing performance despite comprising of over 25% reduced mass loading area, in comparison to the conventional circular electrode configuration.


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045127
Author(s):  
Xinqing Li ◽  
Manwen Liu ◽  
Zheng Li

Sign in / Sign up

Export Citation Format

Share Document