scholarly journals ACOFT ANZOP SPIE Melb 2019 microwave signal processor

2020 ◽  
Author(s):  
David Moss

We propose and demonstrate a reconfigurable microwave signal processor for fractional and regular Hilbert transform with 17 GHz bandwidth based on an integrated Kerr optical frequency comb source. Transmission responses and temporal characterization are experimentally demonstrated.

2015 ◽  
Vol 338 ◽  
pp. 90-94 ◽  
Author(s):  
Wen Ting Wang ◽  
Jian Guo Liu ◽  
Wen Hui Sun ◽  
Wei Chen ◽  
Ning Hua Zhu

2021 ◽  
pp. 1-1
Author(s):  
Prajwal D Lakshmijayasimha ◽  
Syed Tajammul Ahmad ◽  
Eamonn Martin ◽  
Anandarajah M Prince ◽  
Aleksandra Maria Kaszubowska-Anandarajah

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mamoru Endo ◽  
Shota Kimura ◽  
Shuntaro Tani ◽  
Yohei Kobayashi

AbstractMulti-gigahertz mechanical vibrations that stem from interactions between light fields and matter—known as acoustic phonons—have long been a subject of research. In recent years, specially designed functional devices have been developed to enhance the strength of the light-matter interactions because excitation of acoustic phonons using a continuous-wave laser alone is insufficient. However, the strength of the interaction cannot be controlled appropriately or instantly using these structurally-dependent enhancements. Here we show a technique to control the effective interaction strength that does not operate via the material structure in the spatial domain; instead, the method operates through the structure of the light in the time domain. The effective excitation and coherent control of acoustic phonons in a single-mode fiber using an optical frequency comb that is performed by tailoring the optical pulse train. This work represents an important step towards comb-matter interactions.


2017 ◽  
Author(s):  
Takeo Minamikawa ◽  
Takashi Ogura ◽  
Takashi Masuoka ◽  
Eiji Hase ◽  
Yoshiaki Nakajima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document