scholarly journals Observation of vector solitary waves in soft laminates using a finite volume method

2020 ◽  
Author(s):  
Ron Ziv ◽  
Gal Shmuel

Soft materials with engineered microstructure support nonlinear waves which can be harnessed for various applications, from signal communication to impact mitigation. Such waves are governed by nonlinear coupled differential equations whose analytical solution is seldom trackable, hence emerges the need for suitable numerical solvers. Based on a finite-volume method in one space dimension, we here develop a designated scheme for nonlinear waves with two coupled components that propagate in soft laminates. We apply our scheme to a periodic laminate made of two alternating compressible Gent layers, and consider two cases. In one case, we analyze a motion whose component along the lamination direction is coupled to a component in the layers plane, and discover vector solitary waves in a continuum medium. In the second case, we analyze a motion with two coupled components in the plane of the layers, and observe a train of linearly polarized solitary waves, followed by a single circularly polarized wave. The framework we developed offers a platform for further investigation of these waves and their extension to higher dimensional problems.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6151
Author(s):  
Yueyuan Gao ◽  
Danielle Hilhorst ◽  
Huy Cuong Vu Do

In this article, we consider a time evolution equation for solute transport, coupled with a pressure equation in space dimension 2. For the numerical discretization, we combine the generalized finite volume method SUSHI on adaptive meshes with a time semi-implicit scheme. In the first part of this article, we present numerical simulations for two problems: a rotating interface between fresh and salt water and a well-known test case proposed by Henry. In the second part, we also introduce heat transfer and perform simulations for a system from the documentation of the software SEAWAT.


Sign in / Sign up

Export Citation Format

Share Document