scholarly journals PROBLEMS OF CONCENTRATED FORCES ACTING ON A TRANSVERSELY-ISOTROPY : Part IV Cerruti's problem

1979 ◽  
Vol 276 (0) ◽  
pp. 9-16
Author(s):  
SEIJI TESHIGAWARA ◽  
OSAMU MATSUOKA
1979 ◽  
Vol 14 (3) ◽  
pp. 103-109 ◽  
Author(s):  
J R Barber

Closed-form solutions and stress-concentration data are obtained for the problem of a sector of an annular plate subjected to moments and transverse forces on its radial edges. Closed-form solutions are also given for a semi-infinite plate or a circular plate subjected to a system of concentrated forces and/or moments at the edge.


1976 ◽  
Vol 10 (5) ◽  
pp. 511-515
Author(s):  
S. Ya. Yarema ◽  
P. M. Vitvitskii ◽  
A. I. Zboromirskii ◽  
O. P. Ostash

Author(s):  
Dongzhou Huang ◽  
Mohsen Shahawy

Prestressed U-beam bridges compare favorably in cost and appearance to traditional concrete I-beam bridges. Consequently, U-beam bridges are gaining in popularity and usage, especially when aesthetic issues are deemed important. U-beam bridges first appeared in Florida in 2000; however, during construction, cracks developed in the webs of the U-beams. This paper presents results of an analysis of representative cracking of U-beams and proposes a practical method for the transfer zone stirrup design. For the purpose of the analysis, the U-beam is divided into a series of finite shell-plate elements, and the prestressing tendons are simulated as a number of concentrated forces. Two different mechanical models of the U-beams are developed on the basis of the stages of construction. Analytical results show that high tensile stresses occur in the end zone of the U-beam because of the prestressing tendons and that these tensile stress must be properly considered in bridge design. The research results are applicable to the design of prestressed U-beams and similar types of prestressed girders.


1989 ◽  
Vol 56 (3) ◽  
pp. 550-555 ◽  
Author(s):  
John Dundurs ◽  
Xanthippi Markenscoff

This paper provides a Green’s function formulation of anticracks (rigid lamellar inclusions of negligible thickness that are bonded to the surrounding elastic material). Apart from systematizing several previously known solutions, the article gives the pertinent fields for concentrated forces, dislocations, and a concentrated couple applied on the line of the anticrack. There is a reason for working out these results: In contrast to concentrated forces, a concentrated couple approaching the tip of an anticrack makes the elastic fields explode. Finite limits can be achieved, however, by appropriately diminishing the magnitude of the couple, which then leads to fields that are intimately connected with the weight functions for the anticrack. An edge dislocation going to the tip of an anticrack puts a net force on the lamellar inclusion, which is shown to be related to a previously known feature of dislocations near a bimaterial interface.


Sign in / Sign up

Export Citation Format

Share Document