transfer zone
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 52)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Francesco Mazzarini ◽  
Giovanni Musumeci ◽  
Samuele Papeschi

In their paper, Spiess et al. (2021) published structural, geochronological, and EBSD data on one of the monzogranite apophyses (Capo Bianco) of the buried Porto Azzurro Pluton (island of Elba, Northern Apennines, Italy), a pluton emplaced in the upper crust (P < 0.2 GPa; e.g. Papeschi et al., 2019). The authors publish a new U/Pb age of 6.4 ± 0.4 Ma, associated to the thermal peak, and a U-Th/He apatite age of 5.0 ± 0.6 Ma, related to a T of 60 °C. Spiess et al. (2021) use these ages to model the exhumation of the pluton controlled by the sub-horizontal Zuccale Fault, a fault with 6 km of horizontal displacement (ZF; Keller & Coward, 1996). Their structural dataset from the macro to the microscale and EBSD analyses relies on a small section (about 100 m wide) in the NE part of the Calamita Peninsula. Based on their documentation of (1) vertical dykes in the monzogranite, (2) vertical to low-angle top-to-the-E extensional faults, and (3) later NW-striking oblique faults, they interpret the Porto Azzurro Pluton as emplaced in an extensional to transcurrent tectonic setting, extrapolating their findings to the entire Eastern Elba.


2021 ◽  
pp. 104498
Author(s):  
Richard Spiess ◽  
Antonio Langone ◽  
Alfredo Caggianelli ◽  
Finlay M. Stuart ◽  
Martina Zucchi ◽  
...  

2021 ◽  
pp. 1-52
Author(s):  
Sumit Verma ◽  
Satinder Chopra ◽  
Thang Ha ◽  
Fangyu Li

Seismic interpreters frequently use seismic geometric attributes such as coherence, dip, curvature, and aberrancy for defining geological features, including faults, channels, angular unconformities, etc. Some of the commonly used coherence attributes, e. g. cross-correlation or energy ratio similarity are sensitive to only waveform shape changes, whereas the dip, curvature, aberrancy attributes are based on changes in reflector dips. There is another category of seismic attributes, which includes attributes that are sensitive to amplitude values. Root mean square amplitude is one of the better-known amplitude-based attributes, whereas coherent energy, Sobel-filter similarity, normalized amplitude gradients, and amplitude curvature are amongst lesser-known amplitude-based attributes. We compute not-so-common amplitude-based attributes on the Penobscot seismic survey from the Nova Scotia continental shelf consisting of the east coast of Canada, to bring out their interpretative value. We analyze seismic attributes at the level of the top of the Wyandot Formation that exhibits different geological features, including a synthetic transfer zone with two primary faults and several secondary faults, polygonal faults associated with differential compaction, as well as fixtures related to basement related faults. The application of the amplitude-based seismic attributes defines such features accurately. We take these applications forward by describing a situation where some geological features do not display any bending of reflectors, but only exhibit changes in amplitude. One of such examples is the Cretaceous Cree Sand channels, present in the same 3D seismic survey used for the previous applications. We compute amplitude curvature attributes and identify the channels, whereas these channels are not visible on the structural curvature display. In both the applications, we observe that appropriate corendering not-so-common amplitude based seismic attributes leads to convincing displays, that can be of immense aid in seismic interpretation and help define the different subsurface features with more clarity.


2021 ◽  
Vol 11 (4) ◽  
pp. 4114-4130

Adsorption through waste adsorbents is one of the developing technologies used for treating textile wastewater. The present study explores the possible outcome of Eucalyptus camaldulensis biomass as an adsorbent for removing crystal violet dye from aqueous solutions. Eucalyptus camaldulensis biomass was used as such and used in fixed bed column mode to testify its potential at different parameters. Effect of different constraints like bed height (cm), flow rate (mlmin-1), initial dye concentration (mgL-1), and pH were studied along with breakthrough curve and exhaust time. Maximum breakthrough curve and exhaust time and utilization of mass transfer zone were observed at bed height of 20 cm. However, the promising results are obtained at higher dye concentration (50 mgL-1), lower flow rate (1 mlmin-1), and at lower pH of 5. This study reveals promising results at acidic pH. This study reflects that adsorption capacity and breakthrough curve favor lower acidic pH. The adsorption data in batch mode follow the Langmuir isotherm and best fit to pseudo-second-order reaction kinetics. The breakthrough curve and mass transfer zone are individually testified, and the breakthrough curve obeys the assumptions of the Thomas model, and R2 (0.933-0.997) values confirm the data that its best fit with the Thomas model.


Author(s):  
Lennart Zey ◽  
Dirk Briskorn ◽  
Nils Boysen

AbstractTo enable the efficient division of labor in container yards, many large ports apply twin cranes, two identical automated stacking cranes each dedicated to one of the transfer zones on the seaside and landside. The use of a handshake area, a bay of containers that separates the dedicated areas of the two cranes, is a simple means to avoid crane interference. Inbound containers arriving in the transfer zone of one crane and dedicated to a stacking position of the other crane’s area are placed intermediately in the handshake area by the first crane and then taken over by the second crane, and vice versa for outbound containers. Existing research only evaluates simple heuristics and rule-based approaches for the coordination of twin cranes interconnected by a handshake area. For this setting, accounting for precedence constraints due to stacking containers in the handshake area, we derive exact solution procedures under a makespan minimization objective. In this way, a comprehensive computational evaluation is enabled, which benchmarks heuristics with optimal solutions and additionally compares alternative crane settings (i.e., without workload sharing and cooperation with flexible handover). We further provide insights into where to position the handshake area. Our results reveal that when planning is too simple (i.e., with a rule-based approach), optimality gaps become large, but with sophisticated optimization, the price of a simplified crane coordination via a handshake area is low.


Author(s):  
Romain HEMELSDAEL ◽  
Michel SERANNE ◽  
Eglantine HUSSON ◽  
Gregory BALLAS

The “Wilson cycle” involves reactivation of rifting structures during convergence-driven inversion, then thrust reactivation during post-orogenic dismantling and extension. Classic documented examples of the Wilson cycle, such as in the pyrenean orogen, are based on sequential sections normal to the orogen. However oblique convergence/divergence that involves strain partitioning, and arcuate segments of the orogen prevent simple tectonic restorations. Languedoc region (southern France) provides a case study of a complex poly-phased deformation involving a range of reactivated structures and cross-cutting relationships, acquired in response to different stress-regimes of varying orientations. We analyse and correlate the onshore-offshore structures of the Languedoc, based on reassessment of existing and newly acquired subsurface data. New results in the previously poorly documented coastal area point to the existence of unrecognized major structures that improves onshore-offshore correlations. Our results show i) the part played by the Mesozoic (early Jurassic, then mid-Cretaceous) extensional phases in the development and the localization of pyrenean-related contractional structures; ii) the control of the later Oligocene rifting of the Gulf of Lion. Restoration of the Pyrenean shortening and Oligocene rifting, constructed along sections of relevant orientation (i.e. close to perpendicular to each other) indicate minimum shortening of 26 km and extension of 14km, respectively, in the Languedoc foreland. Integration of the Pyrenean structural framework of Languedoc reveals a wide, NE-trending transfer zone linking the Iberian Pyrenees to Provence.


2021 ◽  
pp. 1-19
Author(s):  
Paritosh Bhatnagar ◽  
Pierre Karam ◽  
Sumit Verma

We analyzed a synthetic transfer zone and its associated fault planes and relay ramp in Penobscot, a potential offshore field in the Scotian Basin. Transfer zones are structural areas where one fault dies out and another fault begins, forming a relay ramp in the middle. They can be categorized as divergent, convergent, and synthetic transfer zones depending on the relative location and dipping directions of the faults. These zones not only play an important role in fluid migration but also help interpreters delineate secondary features such as fractures, splay shears, and Riedel faults. Commonly those faults would branch into smaller splays and the relay ramp can get “breached” with connecting faults with the increase of slip. The study area in the Scotian basin is characterized by two major listric normal faults dipping in the same direction giving rise to a synthetic transfer zone. These faults are clearly visible on seismic attributes, including curvature and coherence slices extracted along the top of the Cretaceous Petrel Formation. However, when analyzing the seismic attributes along the overlying Wyandot Formation’s top, we observe channel-like features, which run parallel as well as at an angle to these faults. However, when we performed further analysis using seismic amplitude’s vertical slices, interpreted horizons, and seismic attributes, we found that these features are not channels. We divided the features into two types, the first is parallel to the main faults and can be associated with the grabens formed by synthetic and antithetic secondary faults (NE-SW). The second type is related to the polygonal faulting associated with differential compaction and gravitational loading of the Wyandot Chalk Formation. Apart from the two lineations, there are NNE-SSW oriented lineations which are an impression of basement faulting, and NNW-SSE oriented lineations representing acquisition footprint.


Author(s):  
Mohd Danish ◽  
Vijay Parthasarthy ◽  
Mohammed K. Al Mesfer

The rising CO2 concentration has prompted the quest of innovative tools to reduce its effect on the environment. A comparative adsorption study using sustainable low-cost date pits-derived activated carbon and molecular sieve has been carried out for CO2 separation. The adsorb ents were characterized for surface area and morphological properties. The outcomes of flow rate, temperature and initial adsorbate concentration on adsorption performance were examined. The process effectiveness was investigated by breakthrough time, adsorbate loading, efficiency, utilized bed height, mass transfer zone and utilization factor. The immensely steep adsorption response curves demonstrate acceptable utilization of adsorbent capability under breakthrough condition. The adsorbate loading 73.08 mg/g is achieved with an 0.938 column efficiency for developed porous activated carbon at 298 K. The reduced 1.20 cm length of mass transfer zone with enhanced capacity utilization factor equal 0.97 at 298 K with Cin = 5% signifies better adsorption performance for date pits-derived adsorbent. The findings recommend that produced activated carbon is greatly promising to adsorb CO2 in fixed bed column under continuous mode.


Sign in / Sign up

Export Citation Format

Share Document