Topogrid Derived 10 Meter Resolution Digital Elevation Model of the Shenandoah National Park and Surrounding Region, Virginia

2004 ◽  
Author(s):  
Peter G. Chirico ◽  
Seth D. Tanner
Polar Record ◽  
1995 ◽  
Vol 31 (177) ◽  
pp. 191-198 ◽  
Author(s):  
Dorothy K. Hall ◽  
James L. Foster ◽  
Janet Y.L. Chien ◽  
George A. Riggs

AbstractIn the future, data from the moderate resolution imaging spectroradiometer (MODIS) will be employed to map snow in an automated environment at a resolution of 250 m to 1 km. Using Landsat thematic mapper (TM) data, an algorithm, SNOMAP, has been developed to map snow-covered area. This algorithm will be used, with appropriate modification, with MODIS data following the launch of the first Earth Observing System (EOS) platform in 1998. SNOMAP has been shown to be successful in mapping snow in a variety of areas using TM data. However, significant errors may be present in mountainous areas due to effects of topography. To increase the accuracy of mapping global snow-covered area in the future using MODIS data, digital elevation model (DEM) data have been registered to TM data for parts of Glacier National Park, Montana, so that snow cover on mountain slopes can be mapped. This paper shows that the use of DEM data registered to TM data increases the accuracy of mapping snow-covered area. Using SNOMAP on a subscene within the 14 March 1991 TM scene of northwestern Montana, 215 km2 of snow is mapped when TM data are used alone to map the snow cover. We show that about 1062 km2 of snow are actually present as measured when the TM and DEM data are registered. Approximately five times more snow is present when the effects of topography are considered for this subscene, which is in a rugged area in Glacier National Park. A simple model has been developed to determine the relationship between terrain relief and the amount of correction that must be applied to map actual snow-covered area in Glacier National Park using satellite data alone.


Author(s):  
J. Baade ◽  
C. Schmullius

Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unpreceded geometric resolution, precision and accuracy. First processed data sets (i. e. IDEM) with a geometric resolution of 0.4 to 3 arcsec have been made available for scientific purposes. This includes four 1° x 1° tiles covering the Kruger National Park in South Africa. Here we document the results of a local scale IDEM validation exercise utilizing RTK-GNSS-based ground survey points from a dried out reservoir basin and its vicinity characterized by pristine open Savanna vegetation. Selected precursor data sets (SRTM1, SRTM90, ASTER-GDEM2) were included in the analysis and highlight the immense progress in satellite-based Earth surface surveying over the past two decades. Surprisingly, the high precision and accuracy of the IDEM data sets have only little impact on the delineation of watersheds and the calculation of catchment size. But, when it comes to the derivation of topographic catchment properties (e.g. mean slope, etc.) the high resolution of the IDEM04 is of crucial importance, if - from a geomorphologist’s view - it was not for the disturbing vegetation.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document