scholarly journals Analysis of Text Collections for the Purposes of Keyword Extraction Task

2020 ◽  
Vol 44 (1) ◽  
pp. 171-184
Author(s):  
Alexander Vanyushkin ◽  
Leonid Graschenko

The article discusses the evaluation of automatic keyword extraction algorithms (AKEA) and points out AKEA’s dependence on the properties of the test collection for effectiveness. As a result, it is difficult to compare different algorithms who’s tests were based on various test datasets. It is also difficult to predict the effectiveness of different systems for solving real-world problems of natural language processing (NLP). We take in to consideration a number of characteristics, such as the text length distribution in words and the method of keyword assignment. Our analysis of publicly available analytical exposition text which is typical for the keywords extraction domain revealed that their length distributions are very regular and described by the lognormal form. Moreover, most of the article lengths range between 400 and 2500 words. Additionally, the paper presents a brief review of eleven corpora that have been used to evaluate AKEA’s.

2019 ◽  
Author(s):  
Zheyu Wang ◽  
Haoce Huang ◽  
Liping Cui ◽  
Juan Chen ◽  
Jiye An ◽  
...  

BACKGROUND Health education emerged as an important intervention for improving the awareness and self-management abilities of chronic disease patients. The development of information technologies has changed the form of patient educational materials from traditional paper materials to electronic materials. To date, the amount of patient educational materials on the internet is tremendous, with variable quality, which makes it hard to identify the most valuable materials by individuals lacking medical backgrounds. OBJECTIVE The aim of this study was to develop a health recommender system to provide appropriate educational materials for chronic disease patients in China and evaluate the effect of this system. METHODS A knowledge-based recommender system was implemented using ontology and several natural language processing (NLP) techniques. The development process was divided into 3 stages. In stage 1, an ontology was constructed to describe patient characteristics contained in the data. In stage 2, an algorithm was designed and implemented to generate recommendations based on the ontology. Patient data and educational materials were mapped to the ontology and converted into vectors of the same length, and then recommendations were generated according to similarity between these vectors. In stage 3, the ontology and algorithm were incorporated into an mHealth system for practical use. Keyword extraction algorithms and pretrained word embeddings were used to preprocess educational materials. Three strategies were proposed to improve the performance of keyword extraction. System evaluation was based on a manually assembled test collection for 50 patients and 100 educational documents. Recommendation performance was assessed using the macro precision of top-ranked documents and the overall mean average precision (MAP). RESULTS The constructed ontology contained 40 classes, 31 object properties, 67 data properties, and 32 individuals. A total of 80 SWRL rules were defined to implement the semantic logic of mapping patient original data to the ontology vector space. The recommender system was implemented as a separate Web service connected with patients' smartphones. According to the evaluation results, our system can achieve a macro precision up to 0.970 for the top 1 recommendation and an overall MAP score up to 0.628. CONCLUSIONS This study demonstrated that a knowledge-based health recommender system has the potential to accurately recommend educational materials to chronic disease patients. Traditional NLP techniques combined with improvement strategies for specific language and domain proved to be effective for improving system performance. One direction for future work is to explore the effect of such systems from the perspective of patients in a practical setting.


10.2196/17642 ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e17642 ◽  
Author(s):  
Zheyu Wang ◽  
Haoce Huang ◽  
Liping Cui ◽  
Juan Chen ◽  
Jiye An ◽  
...  

Background Health education emerged as an important intervention for improving the awareness and self-management abilities of chronic disease patients. The development of information technologies has changed the form of patient educational materials from traditional paper materials to electronic materials. To date, the amount of patient educational materials on the internet is tremendous, with variable quality, which makes it hard to identify the most valuable materials by individuals lacking medical backgrounds. Objective The aim of this study was to develop a health recommender system to provide appropriate educational materials for chronic disease patients in China and evaluate the effect of this system. Methods A knowledge-based recommender system was implemented using ontology and several natural language processing (NLP) techniques. The development process was divided into 3 stages. In stage 1, an ontology was constructed to describe patient characteristics contained in the data. In stage 2, an algorithm was designed and implemented to generate recommendations based on the ontology. Patient data and educational materials were mapped to the ontology and converted into vectors of the same length, and then recommendations were generated according to similarity between these vectors. In stage 3, the ontology and algorithm were incorporated into an mHealth system for practical use. Keyword extraction algorithms and pretrained word embeddings were used to preprocess educational materials. Three strategies were proposed to improve the performance of keyword extraction. System evaluation was based on a manually assembled test collection for 50 patients and 100 educational documents. Recommendation performance was assessed using the macro precision of top-ranked documents and the overall mean average precision (MAP). Results The constructed ontology contained 40 classes, 31 object properties, 67 data properties, and 32 individuals. A total of 80 SWRL rules were defined to implement the semantic logic of mapping patient original data to the ontology vector space. The recommender system was implemented as a separate Web service connected with patients' smartphones. According to the evaluation results, our system can achieve a macro precision up to 0.970 for the top 1 recommendation and an overall MAP score up to 0.628. Conclusions This study demonstrated that a knowledge-based health recommender system has the potential to accurately recommend educational materials to chronic disease patients. Traditional NLP techniques combined with improvement strategies for specific language and domain proved to be effective for improving system performance. One direction for future work is to explore the effect of such systems from the perspective of patients in a practical setting.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1243-P
Author(s):  
JIANMIN WU ◽  
FRITHA J. MORRISON ◽  
ZHENXIANG ZHAO ◽  
XUANYAO HE ◽  
MARIA SHUBINA ◽  
...  

2021 ◽  
Vol 1955 (1) ◽  
pp. 012072
Author(s):  
Ruiheng Li ◽  
Xuan Zhang ◽  
Chengdong Li ◽  
Zhongju Zheng ◽  
Zihang Zhou ◽  
...  

2021 ◽  
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

BACKGROUND Smoking is a major risk factor and important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). OBJECTIVE We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). METHODS With acronym replacement and Python package Soynlp, we normalize 4,711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. RESULTS Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual clinical notes. Given an identical SVM classifier, the extracted keywords improve the F1 score by as much as 1.8% compared to those of the unigram and bigram Bag of Words. CONCLUSIONS Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired and used for clinical practice and research.


2017 ◽  
Vol 6 (1) ◽  
pp. 36-52
Author(s):  
Urmila Shrawankar ◽  
Kranti Wankhede

A considerable amount of time is required to interpret whole news article to get the gist of it. Therefore, in order to reduce the reading and interpretation time, headlines are necessary. The available techniques for news headline construction mainly includes extractive and abstractive headline generation techniques. In this paper, context based news headline is formed from long news article by using techniques of core Natural Language Processing (NLP) and key terms of news article. Key terms are retrieved from lengthy news article by using various approaches of keyword extraction. The keyphrases are picked out using Keyphrase Extraction Algorithm (KEA) which helps to construct headline syntax along with NLP's parsing technique. Sentence compression algorithm helps to generate compressed sentences from generated parse tree of leading sentences. Headline helps user for reducing cognitive burden of reader by reflecting important contents of news. The objective is to frame headline using key terms for reducing reading time and efforts of reader.


2020 ◽  
Vol 11 (2) ◽  
pp. 28-46 ◽  
Author(s):  
Marco Spruit ◽  
Drilon Ferati

In a time when the employment of natural language processing techniques in domains such as biomedicine, national security, finance, and law is flourishing, this study takes a deep look at its application in policy documents. Besides providing an overview of the current state of the literature that treats these concepts, the authors implement a set of natural language processing techniques on internal bank policies. The implementation of these techniques, together with the results that derive from the experiments and expert evaluation, introduce a meta-algorithmic modelling framework for processing internal business policies. This framework relies on three natural language processing techniques, namely information extraction, automatic summarization, and automatic keyword extraction. For the reference extraction and keyword extraction tasks, the authors calculated precision, recall, and F-scores. For the former, the researchers obtained 0.99, 0.84, and 0.89; for the latter, this research obtained 0.79, 0.87, and 0.83, respectively. Finally, the summary extraction approach was positively evaluated using a qualitative assessment.


2021 ◽  
Vol 11 (19) ◽  
pp. 8812
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

Smoking is an important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). With acronym replacement and Python package Soynlp, we normalize 4711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual EHRs. Given an identical SVM classifier, the F1 score is improved by as much as 1.8% compared to those of the unigram and bigram Bag of Words. Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired for clinical practice and research.


Sign in / Sign up

Export Citation Format

Share Document