scholarly journals Mean-field limit versus small-noise limit for some interacting particle systems

2016 ◽  
Vol 10 (1) ◽  
Author(s):  
Samuel Herrmann ◽  
Julian Tugaut
2020 ◽  
Vol 405 ◽  
pp. 109181 ◽  
Author(s):  
Martin Burger ◽  
René Pinnau ◽  
Claudia Totzeck ◽  
Oliver Tse ◽  
Andreas Roth

2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


2021 ◽  
Vol 31 (6) ◽  
Author(s):  
Li Chen ◽  
Esther S. Daus ◽  
Alexandra Holzinger ◽  
Ansgar Jüngel

AbstractPopulation cross-diffusion systems of Shigesada–Kawasaki–Teramoto type are derived in a mean-field-type limit from stochastic, moderately interacting many-particle systems for multiple population species in the whole space. The diffusion term in the stochastic model depends nonlinearly on the interactions between the individuals, and the drift term is the gradient of the environmental potential. In the first step, the mean-field limit leads to an intermediate nonlocal model. The local cross-diffusion system is derived in the second step in a moderate scaling regime, when the interaction potentials approach the Dirac delta distribution. The global existence of strong solutions to the intermediate and the local diffusion systems is proved for sufficiently small initial data. Furthermore, numerical simulations on the particle level are presented.


Sign in / Sign up

Export Citation Format

Share Document