noise limit
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 68)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
pp. 2270011
Author(s):  
Yun‐Yi Pai ◽  
Claire E. Marvinney ◽  
Chengyun Hua ◽  
Raphael C. Pooser ◽  
Benjamin J. Lawrie

Nature ◽  
2021 ◽  
Vol 600 (7889) ◽  
pp. 424-428
Author(s):  
Sander M. Vermeulen ◽  
Philip Relton ◽  
Hartmut Grote ◽  
Vivien Raymond ◽  
Christoph Affeldt ◽  
...  

AbstractThe nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape1. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2–8. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits on the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beam splitter of the GEO600 interferometer. These constraints improve on bounds from previous direct searches by more than six orders of magnitude and are, in some cases, more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be investigated or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhengyuan Gao ◽  
Shanming Wang ◽  
Zhiguo An ◽  
Pengfei Sun

Considerable vibration and acoustic noise limit the further application of Switched Reluctance Machine (SRM) due to its structural characteristics and working principle. An improved SRM model with double auxiliary slots (DAS) was proposed, in which the direction of the magnetic line of force was adjusted, and the radial magnetic density in the air gap was reduced by changing the local tooth profiles of the stator and the rotor. The effects of initial rotor position and turn-on angle and turn-off angle on radial Electromagnetic Force (EMF) and maximum torque were investigated. The results indicate the radial EMF and torque increase significantly with the advancement of the turn-on angle or the delay of the turn-off angle. In the orthogonal experimental design, initial rotor position, turn-on angle, and turn-off angle were taken as the factors, and the optimal set of parameters that minimized radial EMF was determined according to a greater output torque. In contrast to conventional SRM, the radial EMF of the SRM with DAS significantly reduces when the optimal set is applied.


2021 ◽  
pp. 2100107
Author(s):  
Yun‐Yi Pai ◽  
Claire E. Marvinney ◽  
Chengyun Hua ◽  
Raphael C. Pooser ◽  
Benjamin J. Lawrie

2021 ◽  
Vol 2021 (11) ◽  
pp. 113206
Author(s):  
P L Garrido

Abstract We assume that a system at a mesoscopic scale is described by a field ϕ(x, t) that evolves by a Langevin equation with a white noise whose intensity is controlled by a parameter 1 / Ω . The system stationary state distribution in the small noise limit (Ω → ∞) is of the form P st [ϕ] ≃ exp(−ΩV 0[ϕ]), where V 0[ϕ] is called the quasipotential. V 0 is the unknown of a Hamilton–Jacobi equation. Therefore, V 0 can be written as an action computed along a path that is the solution from Hamilton’s equation that typically cannot be solved explicitly. This paper presents a theoretical scheme that builds a suitable canonical transformation that permits us to do such integration by deforming the original path into a straight line and including some weights along with it. We get the functional form of such weights through conditions on the existence and structure of the canonical transformation. We apply the scheme to get the quasipotential algebraically for several one-dimensional nonequilibrium models as the diffusive and reaction–diffusion systems.


Author(s):  
Mohammadjavad Dowran ◽  
Timothy S. Woodworth ◽  
Ashok Kumar ◽  
Alberto Marino

Abstract Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramér-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity but a smaller degree of quantum enhancement than the transmission-based scheme. We also study the effect of losses external to the sensor on the degree of quantum enhancement and show that for certain conditions, probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meiting Song ◽  
John Steinmetz ◽  
Yi Zhang ◽  
Juniyali Nauriyal ◽  
Kevin Lyons ◽  
...  

AbstractOptical interferometry plays an essential role in precision metrology such as in gravitational wave detection, gyroscopes, and environmental sensing. Weak value amplification enables reaching the shot-noise-limit of sensitivity, which is difficult for most optical sensors, by amplifying the interferometric signal without amplifying certain technical noises. We implement a generalized form of weak value amplification on an integrated photonic platform with a multi-mode interferometer. Our results pave the way for a more sensitive, robust, and compact platform for measuring phase, which can be adapted to fields such as coherent communications and the quantum domain. In this work, we show a 7 dB signal enhancement in our weak value device over a standard Mach-Zehnder interferometer with equal detected optical power, as well as frequency measurements with 2 kHz sensitivity by adding a ring resonator.


2021 ◽  
Vol 13 (21) ◽  
pp. 11920
Author(s):  
Marino Lupi ◽  
Chiara Pratelli ◽  
Alessandro Farina

In this paper, a new methodology for the assessment of the so-called “acoustic capacity” of a road infrastructure is proposed. This aspect is very important in the field of transportation planning as, currently, road infrastructures are verified only in terms of physical capacity; at most, the environmental capacity due to atmospheric pollutants is taken into account, while the acoustic capacity is completely neglected. The acoustic capacity is assessed based on the Harmonoise model, which is widely recognized at the European level. The Harmonoise model, starting from traffic data, such as traffic flows, average speed, and typologies of vehicles, provides the levels of noise emissions and immissions, which can be compared to the noise limit levels established by law. The validity of the proposed methodology was assessed on a test network. The results of this analysis show that, generally, the acoustic capacity is actually a capacity constraint, which involves several traffic flows: this occurs in particular in the case of an intersection, but also in the case of a bi-directional road. Furthermore, the acoustic capacity of a road infrastructure is generally lower than its physical capacity.


Sign in / Sign up

Export Citation Format

Share Document