Design and Testing of Tie-Down Systems for Temporary Barriers

Author(s):  
Bob W. Bielenberg ◽  
Ronald K. Faller ◽  
John D. Reid ◽  
John R. Rohde ◽  
Dean L. Sicking

Two tie-down temporary barrier systems were developed and crash tested according to the safety performance criteria provided in NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features. Both tie-down systems were designed to reduce barrier displacements and to retain deflected barriers on the bridge deck edge. The first system consisted of a steel tie-down strap concept for use with the Iowa F-shape temporary concrete barrier. At each barrier joint, the trapezoidal-shaped strap retained the vertical pin and was attached to the concrete bridge deck using two drop-in anchors. An acceptable fullscale vehicle crash test of the tie-down strap concept was conducted according to the Test Level 3 (TL-3) impact safety standards in NCHRP Report 350. The second tie-down system was developed for use with Iowa’s steel H-section temporary barrier. A new barrier connection was developed to simplify barrier attachment and to accommodate deviations in horizontal and vertical alignment. It consisted of two steel shear plates positioned within an opening on the adjacent barrier section and held in place with two steel drop pins. Four steel angle brackets were welded to the barrier’s base to allow for rigid attachment to the concrete bridge deck with drop-in anchors. Two full-scale vehicle crash tests were conducted on the steel H-barrier system according to TL-3 impact safety standards found in NCHRP Report 350. After an unacceptable first test, the system was successfully tested with minor design modifications.

PCI Journal ◽  
2011 ◽  
Vol 56 (3) ◽  
pp. 43-59 ◽  
Author(s):  
Sean R. Sullivan ◽  
Carin L. Roberts-Wollmann ◽  
Matthew K. Swenty

PCI Journal ◽  
1995 ◽  
Vol 40 (1) ◽  
pp. 59-80 ◽  
Author(s):  
Mohsen A. lssa ◽  
Ahmad-Talalldriss ◽  
lraj I. Kaspar ◽  
Salah Y. Khayyat

Author(s):  
Petr Konečný ◽  
Petr Lehner ◽  
David Pustka

The paper is focused on the model of the effect of delayed chloride exposure on the chloride induced corrosion initiation on ideal reinforced concrete bridge. The Finite Element-based numerical model is applied. The effect of concrete quality is expressed in the form of time dependent diffusion coefficient in order to evaluate the effect of concrete type as well as the effect of aging. The influence of extended chloride exposure on the corrosion initiation is introduced.


2021 ◽  
Vol 293 ◽  
pp. 123520
Author(s):  
Ningyi Su ◽  
Liangwei Lou ◽  
Armen Amirkhanian ◽  
Serji N. Amirkhanian ◽  
Feipeng Xiao

2014 ◽  
Vol 1004-1005 ◽  
pp. 1474-1477
Author(s):  
Ze Ying Yang ◽  
Jia You Liu ◽  
Yi Dong Zhang ◽  
Jian Bo Qu

By numerical simulation and contrasting with experimental conclusions, mechanical models in every loading stage of CFRP reinforced concrete bridge deck were established. The results showed that, numerical simulation results of non-prestressed bridge decks fitted corresponding test results well. The stiffness of prestressed structures had been greatly improved than non-prestressed structures, so the high strength performance of CFRP had been used more effectively.


Author(s):  
Yuhao Huang ◽  
Liu Chao ◽  
Xu Dong

<p>Recently, composite girder cable-stayed bridge is widely used in the world. Since the existing design method takes less focus on the principal stress of the top and bottom slab, the cracking problem of the concrete bridge deck has not been solved perfectly yet. Based on the spatial grid model, this paper takes Guan He Bridge in Jiangsu province as an example to analyze this kind of structure. Monitoring the principal stress of the concrete bridge deck is proposed for the first time to study the effect of diagonal crack. The principal stress of the concrete deck in the middle span, the quartile span, one-eighth of the span, the side span, the bridge tower, and the auxiliary pier are observed respectively. Comparing the theoretical values with the measured value, the results show that the actual stress state of the whole concrete bridge deck during construction is in accordance with the theoretical calculation. For composite girder cable-stayed bridge, the concrete bridge deck is prone to crack, so it is very significant to control the quality in the construction stage, which can provide a guarantee for the safety and durability of the structure.</p>


Sign in / Sign up

Export Citation Format

Share Document